a2 United States Patent

Swayn et al.

US009355293B2

US 9,355,293 B2
May 31, 2016

(10) Patent No.:
(45) Date of Patent:

(54) CODE DETECTION AND DECODING
SYSTEM
(75) Inventors: James Swayn, Rhodes (AU); Alvin Wai
Leong Yeap, Marsfield (AU); Stephen
Edward Ecob, Chatswood West (AU)
(73)

Assignee: CANON KABUSHIKI KAISHA,

Tokyo (JP)

Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 1036 days.

Notice:

")

@
(22)

Appl. No.: 12/628,425

Filed: Dec. 1, 2009

Prior Publication Data

US 2010/0155464 A1l Jun. 24, 2010

(65)
(30) Foreign Application Priority Data

Dec. 22, 2008
Dec. 22, 2008

2008261177
2008261179

(AU)
(AU)

(51) Int.CL
GOGF 17/00
GOGK 7/14
USS. CL
CPC

(2006.01)
(2006.01)

(52)
................ GO6K 7/14 (2013.01); GO6K 7/1417
(2013.01); GO6K 7/1452 (2013.01); GO6K
7/1456 (2013.01)

Field of Classification Search
CPC .. GO6K 7/14; GO6K 7/1417, GO6K 19/06037
USPC 235/462.1, 375, 3/462.1, 375

See application file for complete search history.

(58)

(56) References Cited
U.S. PATENT DOCUMENTS

5,726,435 A
6,267,296 Bl

3/1998 Hara et al.
7/2001 Ooshima et al.

(Continued)

B @ 1000
_ \ /
\(\\L 1001

1010

A

FOREIGN PATENT DOCUMENTS

EP 0672994 Al 9/1995

EP 0766449 A2 4/1997

EP 0672994 Bl 7/2000
OTHER PUBLICATIONS

Examination Report dated Nov. 1, 2010 issued in corresponding
Australian Patent Application No. 2008261179.

(Continued)

Primary Examiner — Rafferty Kelly
(74) Attorney, Agent, or Firm — Fitzpatrick, Cella, Harper &
Scinto

(57) ABSTRACT

A method (2304) of decoding a QR code having two initially
detected finder patterns (2901, 2902;2911,2912) is provided.
The method forms (2402) a pattern matching template (2700,
2800) based on characteristics of the detected finder patterns
and determines (2403) at least one candidate region (2904,
2905; 2913, 2914) about the detected finder patterns. The
candidate region is typically based at least on the relative
positions of the detected finder patterns. The method detects
(2404) a previously undetected third finder pattern of the QR
code in the at least one candidate region by correlating con-
tent of the candidate region with the pattern matching tem-
plate. With the identified third finder pattern and each of the
two initially detected finder patterns, decoding (2305) the QR
code can then be performed. Also disclosed is a method of
detecting a two-dimensional code comprising known target
features and coded data in an image. The target features
comprise a continuous black region, enclosed entirely by a
continuous white region, enclosed entirely by a continuous
black region. The method performs line-by-line connected
component analysis (403) of the image to determine candi-
date features of interest. The line-by-line connected compo-
nent analysis aggregates metrics corresponding to candidate
features of interest. The method evaluates (404) the aggre-
gated metrics to determine how similar each candidate feature
of'interest is to the target feature and forms (405) a candidate
region of interest from multiple candidate features of interest.
Typically the target features include the copyright symbol ©
and the registered trade mark symbol ®.

13 Claims, 49 Drawing Sheets

/T~
/
= a8
/ 1012
/
g._ "

US 9,355,293 B2
Page 2

(56) References Cited

U.S. PATENT DOCUMENTS

6,279,830 Bl 8/2001
2006/0050961 Al 3/2006
2006/0269136 Al* 11/2006
2007/0071320 Al 3/2007
2007/0172123 Al 7/2007

Ishibashi

Thiyagarajah

Squires et al. 382/181
Yada

Komatsubara et al.

2007/0187512 Al 82007 Yada
2007/0228171 Al* 10/2007 Thiyagarajah 235/462.09

OTHER PUBLICATIONS

Examination Report dated Dec. 24, 2010 in Australian Patent Appli-
cation No. 2008261177.

* cited by examiner

U.S. Patent May 31, 2016 Sheet 1 of 49 US 9,355,293 B2

101

102

T \\\\\\\\

103

U.S. Patent

May 31, 2016 Sheet 3 of 49 US 9,355,293 B2

400

401

0 402

/_i1

1

Binarization
Nz 403
CCA /\/
Resolving
/\ﬁ 6 405
v /\/
Decoding -
418
406
End

U.S. Patent May 31, 2016 Sheet 4 of 49 US 9,355,293 B2

501 404

Start /
502

Find 3/3 regions

l 503
Find 2/3 regions /\/

504

!

End

Fig. 5

601 502

/

602

Start

i

Find potential 3/3 regions

N\ 606 603

v
Find true 3/3 regions

{

608

End

U.S. Patent May 31, 2016 Sheet 5 of 49 US 9,355,293 B2

701

7
414 02

602

e

)

Generate list of FP triplets

'if‘\\\\,,71o

Select a triplet

l/\/712 704

Check similar module sizes

l 705

703

L

L

Check similar FP angles T~
Check that arrangement of FPs 706
corresponds to a valid QR T
code region
l 707
Check FP angles similarto |/ ~__" ;
region angle Flg 7
714
Y
°° . 708

Add triplet to output list
|

Triplets
remaining?

U.S. Patent May 31, 2016 Sheet 6 of 49 US 9,355,293 B2

[=] E a
Fig. 8A
A/802

@ E @ Fig. 8B

Fig. 8C

U.S. Patent May 31, 2016 Sheet 7 of 49 US 9,355,293 B2

901 603

S

902

Select potential 3/3 region /\/

903

Yes

Region contains
additional finder pattern of
high confidence?

No 904

\ 4
Save true 3/3 region /\/

-

Yes

More potential 3/3
regions?

905

=nd Fig. 9

U.S. Patent May 31, 2016 Sheet 8 of 49 US 9,355,293 B2

/@ 1000
@/ \ - Fig. 10A
ig.
\ K;I\“ 1001
@//
&

I~
1010

N

/ E'1

Fig. 108 _/ oz
&.)/

1011

~
1020
s // N 1023
/ N\
? ~ &)
1022 Fig. 10C
\\ //11021

U.S. Patent May 31, 2016 Sheet 9 of 49 US 9,355,293 B2

1100

\ 1103 1101

/_/1107

1108
1104

U.S. Patent

May 31, 2016 Sheet 10 of 49 US 9,355,293 B2

503

1201 /

T ~__414 1202
4

\

Find finder pattern pairs

1210 1203

{

Find potential 2/3 regions

l/\/1212 1204

{

Find true 2/3 regions

1214 1205
End

Fig. 12

U.S. Patent May 31, 2016 Sheet 11 of 49 US 9,355,293 B2

1301
°

414 1302 1202
Generate list of FP pairs -/ /
’l{\/ 1312 1303
: ~/
Select a pair
L—~__1314 1304
A 4
Check similar module sizes B
1 1305
Check similar FP angles N\
\ 4
) 1306
Check pair conforms to one of two (\/
possible region types
A
o 1307
Check if distance between FPs ™
conforms to QR code versions 1 - 40
Fig. 13
1310
Yes
1308
L f'\/
Add pair to output list
|
1311
Yes
End

remaining? No
1309

U.S. Patent May 31, 2016 Sheet 12 of 49 US 9,355,293 B2

1401 1402 1400
o @
Fig. 14A

1410

1411 Eyz /

Fig. 14B

U.S. Patent May 31, 2016 Sheet 13 of 49 US 9,355,293 B2

1501 —\\\\\’

1521
1520 1523

s Fig. 15C

U.S. Patent May 31, 2016 Sheet 14 of 49 US 9,355,293 B2

1203

\A 1601

Select finder pattern pair

1606
Region type
Diagonal Normal
1603 1604

Generate 1 diagonal Generate 2 normal
type potential code (N type potential code (™
region regions

Yes

Fig. 16

U.S. Patent May 31, 2016 Sheet 15 of 49 US 9,355,293 B2

1702

1714 1711 1713

U.S. Patent May 31, 2016 Sheet 16 of 49 US 9,355,293 B2

1801
1800

1808
1805

I
1802
1803 Fig. 18A
1811 1814 o1
FJ%
1815
1818

1813 V/»]g']s
»<
1817

1816 Fig. 18B

U.S. Patent May 31, 2016 Sheet 17 of 49 US 9,355,293 B2

1204

1901

1212 1902

Select potential 2/3 region

1903

Yes Region contains

additional finder pattern of
high confidence?

1904

Save true 2/3 region T

1906
Yes

More potential 2/3
regions?

1905

End

Fig. 19

U.S. Patent May 31, 2016 Sheet 18 of 49 US 9,355,293 B2

2000
2003 2001
N ////) 2005
§ fJ
/]
2010
/\/
2006 /ﬁ\\,/2007
2009
2011
__\\ 2004
2002
2008 Fig. 20A
2020 2023
o 2025 2021

FJ

2030

/\/
2026 /\\\/2027

__\\ 2024
2022

2 Fig. 20B

U.S. Patent

May 31, 2016 Sheet 19 of 49 US 9,355,293 B2

405

2101

2102

l

Process 3/3 regions

l 2103

l

Process 2/3 regions

2104

End

Fig. 21

U.S. Patent May 31, 2016 Sheet 20 of 49 US 9,355,293 B2

2201
2102
(Start) /
v 2202
Sort 3/3 regions by confidence g
<
v 2203
Select next 3/3 region A
Failed v 2204
aile
Decode region A
Success 2205
A 4
Remove any corresponding 3/ f\J
3 regions
l 2206
Remove any corresponding 2/ f\/
3 regions
2208
Yes

More 3/3 regions?

2207

Fig. 22

U.S. Patent

Failed

May 31, 2016 Sheet 21 of 49 US 9,355,293 B2

2301

v 2302
Sort 2/3 regions by confidence (\/

F
v 2303

T~

Select next 2/3 region

! 2304
Detect missing FP A

Failed

Success 2305
v

|

Decode region

] Success 2306

L

Remove any corresponding
2/3 regions

2308

Yes

More 2/3 regions?

2307

Fig. 23

U.S. Patent May 31, 2016 Sheet 22 of 49 US 9,355,293 B2

2304

2401

2402
Form pattern matching
template using detected /\/

finder patterns

'

Form candidate search 2403
regions potentially containing /\/
a third finder pattern from
detected finder patterns
l 2404

Apply pattern matching f\/ _
template in candidate search Failed
regions to detect third finder

pattern using correlation

l Success Fj%
Output complete QR region

End 2406

Fig. 24

U.S. Patent May 31, 2016 Sheet 23 of 49 US 9,355,293 B2

2402a

/

2501

(Start 1

Y

2502

Get CCA information

—

Y

2503

Generate template using CCA
information

/\/

2504

End

Fig. 25

U.S. Patent May 31, 2016 Sheet 24 of 49 US 9,355,293 B2

2402b

2601

2602

Crop detected finder patterns
along bounding boxes and
scale

1

’ 2603

Create template by averaging
scaled representations of
detected finder patterns

{

2604

End

Fig. 26

U.S. Patent May 31, 2016 Sheet 25 of 49

%\\\\\\\\\\\\\\ \\\\\\\\\\\\\\\: 702

T

.
. “

T
\

-

! .

.

22222222222222222222

Fig. 28

U.S. Patent May 31, 2016 Sheet 27 of 49 US 9,355,293 B2

2900 2904 2907

U.S. Patent May 31, 2016 Sheet 28 of 49 US 9,355,293 B2

3020
y 3021

3002 3017 3008

3007
3001
3003

3012 3013
3006 :izf\\// /’Fi\\“/
E 3006|k/7\|//\j<—

3004 3009

3002

3005 |
3011

3014

\\\‘\\ 3015 3010

A

U.S. Patent May 31, 2016 Sheet 29 of 49 US 9,355,293 B2

3101 3103

AN
w
—_
o
w

3104 —][

SO
I
I

o

3101 3103

Fig. 31

U.S. Patent

Failed

May 31, 2016 Sheet 30 of 49 US 9,355,293 B2

2401 2304a

\ 4

Confirm region

3201

/\/

l Success

Form pattern matching
template using detected
finder patterns

2402

~—

4

Form candidate search 2403
regions potentially containing /\/
a third finder pattern from
detected finder patterns
2404
A 4 /\/
Apply pattern matching _
template in candidate search Failed
regions to detect third finder
pattern
Success 2405
Output complete QR region
pie
2406
End

Fig. 32

Sheet 31 of 49 US 9,355,293 B2

U.S. Patent May 31, 2016

\N
~
-~
-

(Wide-area)
Computer
Network

Computer
Network

3322

3315 3321

- S ,
Printer | e———— . k/ /!

: 3380 ! ,
Microphone | _~ ! / 3300

3314 | 5347 | [3316 f

/ v p

Video Ext. Modem | /

Display _[[] 3333

3308 3

$/3307 —[[] (33\11 /3310 p 3301

'
(‘) ! Aép'”' Storage

Audio-Video /0 Local Program _ [3309
Interface Interfaces || Net. oD Devices i
I/face
i 1 t — 3304
) i

$J3318 ¢ P3319 \fi —

/0 Optical |-
Processor Interface Memory Disk ?312
\3305 ﬁ T‘ f t \ Drive
A
3302 J| Keyboard I
3313 Disk
3326 /1 Scanner 3306 storage §25
di

3327 Camera H | el

3303
Fig. 33A

3390J] Document .\\3392

U.S. Patent May 31, 2016 Sheet 32 of 49 US 9,355,293 B2

3332
(~ 3331 */ 533
3328 S
\/{ Instruction — part 1 | - data - 3335
3329 S Instruction — part 2 | [I~ 3336
I I
3330 | | s 3334
\z-l Instruction | I__—_J’\/_‘ 3337
3350 ~ 3351 3352 3353
[o
| {|| PosT| | BIOS Bf(f;zgfp OPERATING SYSTEM
334977
3354 _
[\ Input variables Output variables "~ 3361
3355 1 A] ™ -
335611 3 | 3363
357l N a6
3358 | N 3365
3359 Intermediate variables
1 o TN\ 3365
3360 +_t] 1 H
L\ 3367
$\/\3319 /\3304
A
3318 3343
vl L
Y
interface [\ 3305
3342
3341 \r /
J— control | instruction<’][™\]___ 3348
33397 unit [I‘t\ 3344
| [3345
| 3347
3340F\f arithmetic | // Fia. 33B
logic unit .
J [date # B | a6 '19

U.S. Patent May 31, 2016 Sheet 33 of 49 US 9,355,293 B2

,—-!ggllﬁ>\\“ y
& \\\‘)

3406

Fig. 34

US 9,355,293 B2

Sheet 34 of 49

May 31, 2016

U.S. Patent

3’5/00

3501

A\

)

ND

70000

TEXT TEXT TEXT TEXT TEXT TEXT TEXT
TEXT TEXT TEXT TEXT TEXT TEXT TEXT

TEXT TEXT TEXT TEXT TEXT TEXT TEXT
TEXT TEXT TEXT TEXT TEXT TEXT TEXT

/ \00““000

e

SRttt tetetetetetolated:
it e tetete e tetetetetetetels!
7 A RSRSLIIRELRAIRKY
I
X

25

b2l
Le%e}
&S
o
&5
&
05
S
ol
e

Fig. 35

U.S. Patent

May 31, 2016 Sheet 35 of 49 US 9,355,293 B2

3601 3600

3602

Binarize Image

-

l

3603

Connected components
analysis

>

l

3604

Evaluate metrics

L

l

3605

Post-processing

L

End

3606

Fig. 36

U.S. Patent

May 31, 2016 Sheet 36 of 49

US 9,355,293 B2

TEXT TEXT TEXT TEXT TEXT TEXT TEXT
TEXT TEXT TEXT TEXT TEXT TEXT TEXT
TEXT TEXT TEXT TEXT TEXT TEXT TEXT
TEXT TEXT TEXT TEXT TEXT TEXT TEXT

3700

Fig. 37

U.S. Patent

May 31,2016 Sheet 37 of 49 US 9,355,293 B2
3801 3602
<
3802
Update maximum and /\/
mininimum values for tile
l 3803
Calculate threshold from /_\/
neighbourhood of tiles
l 3804

Threshold pixel to produce
binarized pixel

L

Yes

More pixels?

Fig. 38

US 9,355,293 B2

Sheet 38 of 49

May 31, 2016

U.S. Patent

heighttile

v

3901 — Widthtne
\

3500
./

N

\\\\\ RIS Yo,

\\\\\\\\\\\\\\\\

LIS LL TS,

GGG

)

s\\\\\

\\\\W\\\\\

Fig. 39

4001

4000

Fig. 40

U.S. Patent May 31, 2016 Sheet 39 of 49 US 9,355,293 B2

4100 3500
e \\ ~ wZ
i l \\“i IR
| S§§ 4101
Fig. 41
heightwindow +1
/
T 4200

M= W

Fig. 42

s 0 :
I

4405
Fig. 44

U.S. Patent May 31, 2016 Sheet 40 of 49 US 9,355,293 B2

3603 4301
e

4302
Get next run on scanline /\/

l

Terminate expired claims & 4303
CCs N\

No
Run found?

Yes

4304
\/\ Process run

Yes ore pixels on
< .
scanline?
4305
Next scanline f\/
? Yes

More scanlines?

4306

Fig. 43

U.S. Patent May 31, 2016 Sheet 41 of 49 US 9,355,293 B2

4501

4304

Yes Run overlaps
| multiple CC
claims?

4502
\ 4
Form new claim

& CC

\ 4 v
Merge claims & K\J Update claim & f\j
CCs cC

4505

Fig. 45 End

U.S. Patent May 31, 2016 Sheet 42 of 49 US 9,355,293 B2

3604

4601 /
(Start f

4602
v

Calculate intermediate metrics

|

4603

\ 4
Calculate shape metrics

{

4604

\ 4
Normalize shape metrics

L

4605
4

Combine shape metrics to
generate a similarity score

v
End

{

4606

Fig. 46

U.S. Patent May 31, 2016 Sheet 43 of 49 US 9,355,293 B2

U.S. Patent May 31, 2016 Sheet 44 of 49 US 9,355,293 B2

U.S. Patent May 31, 2016 Sheet 45 of 49 US 9,355,293 B2

3605

4901 /

4902

Resolve candidate features
into candidate regions

—

l

4903

Remove candidate regions
with internal candidate
features

:

l

4904

Decode candidate regions

L

End

Fig. 49

4905

U.S. Patent May 31, 2016 Sheet 46 of 49 US 9,355,293 B2

5001

Get 3 candidate features

{

\ 4
Check similar module sizes
[5004

{
N

Check distance between
candidate features are equal

l

4 5005
Check for correct orthogonal
arrangement of features

Z

4 5006
Check candidate features have

similar angles Flg 50

Z

l 5007
Check candidate feature

angles are similar to candidate
region angle

{

5008

Yes /
\ 4

Add candidate region to output list

Checks
passed?

No

5009

U.S. Patent May 31, 2016 Sheet 47 of 49 US 9,355,293 B2

5101
Start
) 5102 4903
v /\/ /

Select candidate region

5103
> /_/
Y
Select candidate feature
l 5104

!

Check if candidate feature is
inside candidate region

Yes

Feature is
inside region?

5105

A 4 (\)

Remove candidate region

ore candidate
features?

Yes

regions?

5106 Fig. 51

U.S. Patent May 31, 2016 Sheet 48 of 49 US 9,355,293 B2

§\\\\\\\\ NS
N N AN
\\\\ N NN N
NN AN
N\\\\\\ ey
\ \ 5200

Nt

/

SRR

SRR

NN

§\

////M/////

.z

I

%////////////

ARRRNRRRRRY
5201
Fig. 52
5300 5301
5303 Fig. 53
5302
5501
5500

\ 5303

5502 Fig. 55

U.S. Patent May 31, 2016 Sheet 49 of 49 US 9,355,293 B2

5401 3605

{

Select candidate feature

5403

N

Threshold similarity score

5405

ore candidate
features?

Fig. 54

US 9,355,293 B2

1
CODE DETECTION AND DECODING
SYSTEM

CROSS-REFERENCE TO RELATED PATENT
APPLICATIONS

This application claims the right of priority under 35
U.S.C. §119 based on Australian Patent Application No.
2008261179, filed 22 Dec. 2008, and Australian Patent Appli-
cation No. 2008261177 filed 22 Dec. 2008, both of which are
incorporated by reference herein in its entirety as if fully set
forth herein.

TECHNICAL FIELD

The present disclosure relates generally to identification
marker or target feature detection and consequential code
decoding. The disclosure also relates to searching for, and
grouping of multiple identification markers to form a QR
code region. Once identified, these QR code regions may be
used to decode the data encoded by the QR code symbology.

BACKGROUND

Since the advent of digital images, it has been a goal of
digital image processing to identify and locate features in an
image. Many algorithms and methods have been developed to
accomplish this goal.

A simple method of detecting target features in a scanned
image is known as template correlation. Here, a representa-
tive image of the sought after target feature is formed and
stored in memory. Subsequently, the representative image (or
template) is stepped over the scanned image and a correlation
score is calculated for each step position. A sharp peak in
correlation scores indicates the presence and location of the
target feature in the scanned image. This method, however,
has several limitations. A chief limitation of template corre-
lation is that it is highly sensitive to differences in size and
rotation of the digital image relative to the template. So, for a
robust scale and rotationally invariant detection system, mul-
tiple templates need to be formed, requiring a prohibitive
level of system complexity.

Another method of detecting target features in a scanned
image is performed by statistical means. Here, a machine is
trained to identify target features by various machine learning
algorithms. Generally, the training process involves inputting
large test sets of images with and without target features. At
the conclusion of the training process, a classification vector
is generated by which new ‘unseen’ target features in images
may be detected. However, this method is highly dependent
on the test sets input during the training process. The resulting
classification vector may be unpredictable, and may be unre-
lated to the salient features of the target feature.

Another method of detecting target features in a scanned
image is simple and efficient. Here, a target feature that has a
known arrangement of black and white regions may be
detected by inspecting the ratios between those black and
white regions. As an example, a target feature such as the
feature 100 of FI1G. 1 will be detected if ratios of 1 part black,
followed by 1 part white, followed by 3 parts black, followed
by 1 part white and finally followed by 1 partblack are sought.
Although this method is extremely easy and efficient to
implement, it suffers when the image of the target feature is
affected by a distortion effect known as dot gain. Dot gain is
a printer distortion that shrinks or grows the thickness of

15

20

25

30

40

45

55

2

black printed regions. This directly aftects the ratios of black
and white regions. Thus, this method is not suitable in the
presence of dot gain.

A QR code, such as the code 300 of FIG. 3, is a two-
dimensional barcode that encodes information with black and
white square blocks, referred to as “‘modules’. In the QR code
300, labelled are a black module 302 and a white module 301.
QR codes have a range of data capacities. A ‘Version 1° QR
code encodes the least number of data bits, and a ‘Version 40’
QR code encodes the maximum number of data bits. QR
codes encoding more data bits have a greater number of
modules. Irrespective of its data capacity, a QR code will
always be the same number of modules in width as it is in
height—that is, QR codes are always square.

A QR code comprises three location and identification
symbols. These three location symbols are known as ‘finder
patterns’ (FPs) and are located in the top-left, top-right, and
bottom-left corners of a QR code. Therefore, the two-dimen-
sional area of an image occupied by a QR code, also known as
a ‘QR code region’, is demarcated by the locations of the three
FPs. FIG. 2B shows these three FPs 201, 202, 203 as may be
located at three corners of a QR code 200. FIG. 2A provides
an enlarged representation of the FP 202. FIG. 1 is a detailed
view of a QR code finder pattern 100. Finder patterns are
composed of a 3-by-3 square of black modules 103 superim-
posed on a 5-by-5 square of white modules 102, which is in
turn superimposed on a 7-by-7 square of black modules 101.

The process of extracting the data encoded in a QR code
begins with the acquisition of an image containing the code.
Subsequently, all three finder patterns are detected and their
locations are determined. Using the location information of
the detected FPs, data modules of the QR code are then
sampled to obtain a binary data stream. Finally, the binary
data stream is translated to meaningful text or numerical
information.

QR codes are frequently included on a broad range of
media, such as product labels, billboards and business cards.
In general, these media have only included a single QR code
of high quality (that is, the digital image of the original QR
code has been accurately re-produced on the media). There-
fore, when a QR code is being decoded, there is only a single
QR code in the acquired image and the quality of the code is
high, facilitating the use of relatively simple decoding pro-
cessing. Furthermore, conventional QR code capturing
devices (such as camera phones) can be user-adjusted such
that an image of the QR code may be acquired with very little
rotational misalignment. These user-adjusted capturing
devices can also frame the QR code such that the size of
modules in the QR code (with respect to the capturing device)
is within a confined known range.

Recently, there has been increased interest in the applica-
tion of QR codes in aiding document security and workflow
management. For these applications, there may be multiple
QR codes in an acquired image. Furthermore, there will often
be a broad variation in module sizes and orientations amongst
the QR codes in the image. The QR codes may also have been
printed, scanned and re-printed many times, each time intro-
ducing deterioration of the QR code image quality. Specifi-
cally, QR codes may suffer from ‘dot gain’ in which the ratio
of black module size and white module size in the QR code
differs significantly from the ideal 1:1 ratio. Multiple cycles
of printing and scanning also introduces noise and other dis-
tortions that further alter the appearance of QR code finder
patterns compared to the ideal FP 100. The effect of dot gain
and other print and/or scan introduced distortions on decod-
ing reliability using traditional techniques can be consider-
able. This is because traditional decoding systems typically

US 9,355,293 B2

3

rely heavily on the expected appearance of QR code finder
patterns 100, especially the 1:1 ratio between white and black
module sizes, to detect the QR code finder patterns and
thereby decode the QR code.

SUMMARY

Some arrangements to be described provide a method of
detecting and decoding QR codes that is highly robust to dot
gain, noise and other types of damage. Furthermore, the
arrangements are able to group QR finder patterns to form
valid QR code regions even when there are multiple QR codes
in the acquired image.

Briefly, the QR detecting arrangements disclosed herein
comprise four basic stages—Binarization, CCA, Resolving
and Decoding. These stages are described in more detail later.

The arrangements employ a method of detecting and locat-
ing QR FPs that use Connected Components Analysis (CCA)
which provides more useful information to the Resolving and
Decoding stages than conventional FP detection approaches.

One aspect of the present disclosure employs a novel
approach to grouping QR FPs into QR code regions. The
process of grouping multiple QR FPs to form QR codes is
referred to herein as ‘resolving’. The method of resolving
disclosed herein, applied in conjunction with a missing finder
pattern recovery process, that is another aspect, is capable of
resolving QR code regions from only two initially detected
QR FPs. This feat has not been achieved with methods in the
prior art to the best knowledge of the present inventors and
allows QR codes to be decoded when one of the three FPs is
damaged.

Overall, the disclosed decoding method incorporating the
above-mentioned aspects enables a highly robust QR code
decoding system capable of decoding QR codes even when
one of three FPs is damaged. This damage may be caused by
accidental staining or pen strokes, or by severe noise induced
by multiple cycles of printing and scanning.

In accordance with one aspect of the present disclosure,
there is provided a method of decoding a QR code having two
initially detected finder patterns, the method comprising the
steps of:

(a) forming a pattern matching template based on charac-
teristics of the detected finder patterns;

(b) determining at least one candidate region about the
detected finder patterns, the candidate region being based at
least on the relative positions of the detected finder patterns;
and

(c) locating a previously undetected third finder pattern of
the QR code in the at least one candidate region by correlating
content of the candidate region with the pattern matching
template; and

(d) decoding the QR code with each of the two initially
detected finder patterns and the third finder pattern.

Another aspect of the present disclosure is a novel method
of performing connected components analysis that simulta-
neously aggregates low-level metrics of each connected com-
ponent. Subsequently, low-level metrics are transformed to
shape metrics that are directly related to the geometric prop-
erties of the connected components. The shape metrics are
then used to calculate a similarity score that is substantially
size and rotationally invariant.

The described arrangements are memory efficient and
amenable to implementation as customized hardware logic in
FPGAs, ASICs or the like. Furthermore, the arrangements are
highly robust to printer and scanner noise and distortions such
as dot gain.

10

15

20

25

30

35

40

45

50

55

60

65

4

In accordance with another aspect of the present disclo-
sure, there is provided a method of detecting a two-dimen-
sional code comprising known target features and coded data
in an image is disclosed. The target features comprise a con-
tinuous black region, enclosed entirely by a continuous white
region, enclosed entirely by a continuous black region. The
method performs line-by-line connected component analysis
of the image to determine candidate features of interest. The
line-by-line connected component analysis aggregates met-
rics corresponding to candidate features of interest. The
method evaluates the aggregated metrics to determine how
similar each candidate feature of interest is to the target fea-
ture and forms a candidate region of interest from multiple
candidate features of interest. Typically the target features
include the copyright symbol © and the registered trade mark
symbol ®.

Other aspects are also disclosed.

BRIEF DESCRIPTION OF THE DRAWINGS

At least one embodiment of the present invention will now
be described with reference to the following drawings, in
which:

FIG. 1 shows an ideal arrangement of a QR code ‘finder
pattern’ which may also be considered a target feature;

FIGS. 2A and 2B show a QR code affected by noise and dot
gain;

FIG. 3 shows a QR code with examples of black and white
modules;

FIG. 4 is a flowchart of a QR code decoding process;

FIG. 5 is a flowchart giving a general overview on a resolv-
ing process employed at step 404 of FIG. 4;

FIG. 6 is a flowchart giving a general overview of a process
employed at step 502 of FIG. 5 to resolve groups of three
finder patterns into a QR code regions;

FIG. 7 is a flowchart detailing a process for checking that
groups of three finder patterns may potentially form a QR
code region;

FIGS. 8A, 8B and 8C show some examples whereby the
checks performed in step 602 of FIG. 6 fail;

FIG. 9is a flowchart showing a process employed at 603 for
finding ‘true’ 3/3 regions;

FIGS. 10A, 10B and 10C show examples of QR code
regions with and without internal finder patterns.

FIG. 11 shows vectors used to determine if a 3/3 QR code
region contains an internal finder pattern;

FIG. 12 is a flowchart giving a general overview of a
process employed at step 503 to resolve groups of two finder
patterns into QR code regions;

FIG. 13 is a flowchart detailing a process for checking that
a pair of finder patterns may potentially form a QR code
region;

FIG. 14 shows examples whereby the checks performed in
1203 fail;

FIGS. 15A, 15B and 15C show normally and diagonally
oriented 2/3 regions;

FIG. 16 is a flowchart describing a process employed at
step 1203 for generating potential 2/3 regions;

FIGS. 17A and 17B show potential QR code regions with
respect to detected finder patterns;

FIGS. 18 A and 18B show vectors, with respect to detected
finder patterns, used to determine the extents of potential QR
code regions;

FIG. 19 is a flowchart showing a process employed at 1204
for finding ‘true’ 2/3 regions;

FIGS. 20A and 20B show vectors used to determine ifa 2/3
QR code region contains an internal finder pattern;

US 9,355,293 B2

5

FIG. 21 is a flowchart giving a general overview of a
process employed at step 405 for decoding QR code regions;

FIG. 22 is a flowchart detailing a process employed at step
2102 for decoding 3/3 regions;

FIG. 23 is a flowchart detailing a process employed at step
2103 for decoding 2/3 regions;

FIG. 24 is a flowchart detailing a process employed at step
2304 for detecting missing finder patterns in a 2/3 region;

FIG. 25 is a flowchart giving a general overview of a
process employed at step 2402 for forming a pattern matching
template from CCA information;

FIG. 26 is a flowchart giving a general overview of an
alternative process that may be employed at step 2402 for
forming a pattern matching template by averaging two ini-
tially detected finder patterns;

FIG. 27 shows an example template formed in memory
taking into account dot gain information;

FIG. 28 shows an example template formed in memory and
rotated;

FIGS. 29A and 29B show examples of search regions and
their relation to detected finder patterns in normally and
diagonally oriented QR code regions;

FIG. 30 show vectors and angles formed to determine the
extents of a search region;

FIG. 31 shows various inherent features of a QR code that
may be utilised to aid in the checks of step 1201 or in the
process of detecting missing finder patterns employed at
2304;

FIG. 32 is a flowchart of an alternative process for detect-
ing a missing finder pattern utilising inherent QR code fea-
tures;

FIGS. 33A and 33B form a schematic block diagram of a
general purpose computer system upon which the arrange-
ments described can be practiced;

FIG. 34 is an alternative target feature that is also valid in
the context of the present disclosure;

FIG. 35 is a digital image with a target feature;

FIG. 36 is a flowchart representing the method of target
feature detection in the context of this disclosure;

FIG. 37 is abinarized image created from the digital image
300,

FIG. 38 is a flowchart representing a method of binariza-
tion which may be used in the present arrangements;

FIG. 39 shows how a digital image 300 may be divided into
a tessellation of tiles;

FIG. 40 shows the two-dimensional array structure of a tile
buffer;

FIG. 41 shows a sliding window composed of tiles over-
layed on a target feature;

FIG. 42 shows a memory efficient tile buffer;

FIG. 43 is a flowchart representing a method of connected
component analysis used in the present disclosure;

FIG. 44 shows the relationship between a CC, its claims,
and run on a scanline;

FIG. 45 is a flowchart representing a method of processing
runs;

FIG. 46 is a flowchart representing a method for evaluating
shape metrics;

FIG. 47 shows the relationship of a candidate feature and
its intermediate metrics;

FIG. 48 shows a QR Code;

FIG. 49 is a flowchart representing a method of post-pro-
cessing in the context of target feature detection for QR Code
decoding;

FIG. 50 is a flowchart representing a method of resolving
candidate features into candidate regions;

10

15

20

25

30

35

40

45

50

55

60

65

6

FIG. 51 is a flowchart representing a method of removing
candidate regions with internal candidate features;

FIG. 52 shows a candidate region with an internal candi-
date feature;

FIG. 53 shows a copyright symbol;

FIG. 54 is a flowchart representing a method of post-pro-
cessing for detection of copyright symbols; and

FIG. 55 shows a registered trademark symbol.

DETAILED DESCRIPTION INCLUDING BEST
MODE

Operating Environment

FIGS. 33A and 33B collectively form a schematic block
diagram of a general purpose computer system 3300, upon
which the various arrangements described can be practiced.

As seen in FIG. 33A, the computer system 3300 is formed
by a computer apparatus module 3301, input devices such as
a keyboard 3302, a mouse pointer device 3303, a scanner
3326, a camera 3327, and a microphone 3380, and output
devices including a printer 3315, a display device 3314 and
loudspeakers 3317. An external Modulator-Demodulator
(Modem) transceiver device 3316 may be used by the com-
puter module 3301 for communicating to and from a commu-
nications network 3320 via a connection 3321. The network
3320 may be a wide-area network (WAN), such as the Internet
or a private WAN. Where the connection 3321 is a telephone
line, the modem 3316 may be a traditional “dial-up” modem.
Alternatively, where the connection 3321 is a high capacity
(eg: cable) connection, the modem 3316 may be a broadband
modem. A wireless modem may also be used for wireless
connection to the network 3320.

The computer appratus 3301 typically includes at least one
processor unit 3305, and a memory unit 3306 for example
formed from semiconductor random access memory (RAM)
and semiconductor read only memory (ROM). The module
3301 also includes an number of input/output (I/O) interfaces
including an audio-video interface 3307 that couples to the
video display 3314, loudspeakers 3317 and microphone
3380, an I/O interface 3313 for the keyboard 3302, mouse
3303, scanner 3326, camera 3327 and optionally a joystick
(not illustrated), and an interface 3308 for the external
modem 3316 and printer 3315. In some implementations, the
modem 3316 may be incorporated within the computer mod-
ule 3301, for example within the interface 3308. The com-
puter module 3301 also has a local network interface 3311
which, via a connection 3323, permits coupling of the com-
puter system 3300 to a local computer network 3322, known
as a Local Area Network (LAN). As also illustrated, the local
network 3322 may also couple to the wide network 3320 via
a connection 3324, which would typically include a so-called
“firewall” device or device of similar functionality. The inter-
face 3311 may be formed by an Ethernet™ circuit card, a
Bluetooth™ wireless arrangement or an IEEE 802.11 wire-
less arrangement.

The interfaces 3308 and 3313 may afford either or both of
serial and parallel connectivity, the former typically being
implemented according to the Universal Serial Bus (USB)
standards and having corresponding USB connectors (not
illustrated). Storage devices 3309 are provided and typically
include a hard disk drive (HDD) 3310. Other storage devices
such as a floppy disk drive and a magnetic tape drive (not
illustrated) may also be used. An optical disk drive 3312 is
typically provided to act as a non-volatile source of data.
Portable memory devices, such optical disks (eg: CD-ROM,
DVD), USB-RAM, and floppy disks for example may then be
used as appropriate sources of data to the system 3300.

US 9,355,293 B2

7

The components 3305 to 3313 of the computer module
3301 typically communicate via an interconnected bus 3304
and in a manner which results in a conventional mode of
operation of the computer system 3300 known to those in the
relevant art. Examples of computers on which the described
arrangements can be practised include IBM-PC’s and com-
patibles, Sun Sparcstations, Apple Mac™ or alike computer
systems evolved therefrom.

The methods of QR code decoding may be implemented
using the computer system 3300 wherein the processes of
FIGS. 4t0 55, to be described, may be implemented as one or
more software application programs 3333 executable within
the computer system 3300. In particular, the steps of the
methods of QR code decoding are effected by instructions
3331 in the software 3333 that are carried out within the
computer system 3300. The software instructions 3331 may
be formed as one or more code modules, each for performing
one or more particular tasks. The software may also be
divided into two separate parts, in which a first part and the
corresponding code modules performs the QR code decoding
methods and a second part and the corresponding code mod-
ules manage a user interface between the first part and the
user.

The software 3333 is generally loaded into the computer
system 3300 from a computer readable medium, and is then
typically stored in the HDD 3310, as illustrated in FIG. 33A,
or the memory 3306, after which the software 3333 can be
executed by the computer system 3300. In some instances, the
application programs 3333 may be supplied to the user
encoded on one or more CD-ROM 3325 and read via the
corresponding drive 3312 prior to storage in the memory
3310 or 3306. Alternatively the software 3333 may be read by
the computer system 3300 from the networks 3320 or 3322 or
loaded into the computer system 3300 from other computer
readable media. Computer readable storage media refers to
any storage medium that participates in providing instruc-
tions and/or data to the computer system 3300 for execution
and/or processing. Examples of such storage media include
floppy disks, magnetic tape, CD-ROM, a hard disk drive, a
ROM or integrated circuit, USB memory, a magneto-optical
disk, or a computer readable card such as a PCMCIA card and
the like, whether or not such devices are internal or external of
the computer module 3301. Examples of computer readable
transmission media that may also participate in the provision
of software, application programs, instructions and/or data to
the computer module 3301 include radio or infra-red trans-
mission channels as well as a network connection to another
computer or networked device, and the Internet or Intranets
including e-mail transmissions and information recorded on
Websites and the like.

The second part of the application programs 3333 and the
corresponding code modules mentioned above may be
executed to implement one or more graphical user interfaces
(GUIs) to be rendered or otherwise represented upon the
display 3314. Through manipulation of typically the key-
board 3302 and the mouse 3303, a user of the computer
system 3300 and the application may manipulate the interface
in a functionally adaptable manner to provide controlling
commands and/or input to the applications associated with
the GUI(s). Other forms of functionally adaptable user inter-
faces may also be implemented, such as an audio interface
utilizing speech prompts output via the loudspeakers 3317
and user voice commands input via the microphone 3380.

FIG. 33B is a detailed schematic block diagram of the
processor 3305 and a “memory” 3334. The memory 3334
represents a logical aggregation of all the memory devices

30

40

45

50

55

8

(including the HDD 3310 and semiconductor memory 3306)
that can be accessed by the computer module 3301 in FIG.
33A.

When the computer module 3301 is initially powered up, a
power-on self-test (POST) program 3350 executes. The
POST program 3350 is typically stored ina ROM 3349 of the
semiconductor memory 3306. A program permanently stored
in a hardware device such as the ROM 3349 is sometimes
referred to as firmware. The POST program 3350 examines
hardware within the computer module 3301 to ensure proper
functioning, and typically checks the processor 3305, the
memory (3309, 3306), and a basic input-output systems soft-
ware (BIOS) module 3351, also typically stored in the ROM
3349, for correct operation. Once the POST program 3350
has run successfully, the BIOS 3351 activates the hard disk
drive 3310. Activation of the hard disk drive 3310 causes a
bootstrap loader program 3352 that is resident on the hard
disk drive 3310 to execute via the processor 3305. This loads
an operating system 3353 into the RAM memory 3306 upon
which the operating system 3353 commences operation. The
operating system 3353 is a system level application, execut-
able by the processor 3305, to fulfil various high level func-
tions, including processor management, memory manage-
ment, device management, storage management, software
application interface, and generic user interface.

The operating system 3353 manages the memory (3309,
3306) in order to ensure that each process or application
running on the computer module 3301 has sufficient memory
in which to execute without colliding with memory allocated
to another process. Furthermore, the different types of
memory available in the system 3300 must be used properly
so that each process can run effectively. Accordingly, the
aggregated memory 3334 is not intended to illustrate how
particular segments of memory are allocated (unless other-
wise stated), but rather to provide a general view of the
memory accessible by the computer system 3300 and how
such is used.

The processor 3305 includes a number of functional mod-
ules including a control unit 3339, an arithmetic logic unit
(ALU) 3340, and a local or internal memory 3348, sometimes
called a cache memory. The cache memory 3348 typically
includes a number of storage registers 3344-3346 in a register
section. One or more internal buses 3341 functionally inter-
connect these functional modules. The processor 3305 typi-
cally also has one or more interfaces 3342 for communicating
with external devices via the system bus 3304, using a con-
nection 3318.

The application program 3333 includes a sequence of
instructions 3331 that may include conditional branch and
loop instructions. The program 3333 may also include data
3332 which is used in execution of the program 3333. The
instructions 3331 and the data 3332 are stored in memory
locations 3328-3330 and 3335-3337 respectively. Depending
upon the relative size of the instructions 3331 and the memory
locations 3328-3330, a particular instruction may be stored in
a single memory location as depicted by the instruction
shown in the memory location 3330. Alternately, an instruc-
tion may be segmented into a number of parts each of which
is stored in a separate memory location, as depicted by the
instruction segments shown in the memory locations 3328-
3329.

In general, the processor 3305 is given a set of instructions
which are executed therein. The processor 3305 then waits for
a subsequent input, to which it reacts to by executing another
set of instructions. Each input may be provided from one or
more of a number of sources, including data generated by one
or more of the input devices 3302, 3303, data received from

US 9,355,293 B2

9

an external source across one of the networks 3320, 3322,
data retrieved from one of the storage devices 3306, 3309 or
data retrieved from a storage medium 3325 inserted into the
corresponding reader 3312. The execution of a set of the
instructions may in some cases result in output of data.
Execution may also involve storing data or variables to the
memory 3334.

The disclosed QR code decoding arrangements use input
variables 3354, that are stored in the memory 3334 in corre-
sponding memory locations 3355-3358. The QR code decod-
ing arrangements produce output variables 3361, that are
stored in the memory 3334 in corresponding memory loca-
tions 3362-3365. Intermediate variables may be stored in
memory locations 3359, 3360, 3366 and 3367.

The register section 3344-3346, the arithmetic logic unit
(ALU) 3340, and the control unit 3339 of the processor 3305
work together to perform sequences of micro-operations
needed to perform “fetch, decode, and execute” cycles for
every instruction in the instruction set making up the program
3333. Each fetch, decode, and execute cycle comprises:

(a) a fetch operation, which fetches or reads an instruction
3331 from a memory location 3328;

(b) a decode operation in which the control unit 3339
determines which instruction has been fetched; and

(c) an execute operation in which the control unit 3339
and/or the ALU 3340 execute the instruction.

Thereafter, a further fetch, decode, and execute cycle for
the next instruction may be executed. Similarly, a store cycle
may be performed by which the control unit 3339 stores or
writes a value to a memory location 3332.

Each step or sub-process in the processes of FIGS. 4 to 55
is associated with one or more segments of the program 3333,
and is performed by the register section 3344-3347, the ALU
3340, and the control unit 3339 in the processor 3305 working
together to perform the fetch, decode, and execute cycles for
every instruction in the instruction set for the noted segments
of the program 3333.

The methods of code detection and decoding and QR code
decoding may alternatively be implemented in dedicated
hardware such as one or more integrated circuits performing
the functions or sub functions of QR code decoding. Such
dedicated hardware may include graphic processors, digital
signal processors, or one or more microprocessors and asso-
ciated memories.

QR Code Decoding System

Typically for QR code decoding, as seen in FIG. 33A, a
document 3390 having at least one QR code formed thereon
is scanned by the scanner 3326 or captured by the camera
3327 to deliver to the computer 3301 via the interface 3313 an
acquired image of the document 3390, the image being stored
in the memory 3334 as the input variable 3355. Using the
image stored in that storage location, and also in other storage
locations including those mentioned above, QR code decod-
ing proceeds under control of the application program and the
processing performed by the processor 3305, as will now be
described.

Decoding Flow & Binarization

A method 400 of decoding one or more QR codes in an
acquired image is described with reference to FIG. 4. The
method 400 forms the basis of the application program as
executed by the processor 3305.

The process 400 of decoding one or more QR codes in the
acquired image begins at an initial step 401 in which an image
410 with QR codes is input as discussed above. The image
may be acquired from a flatbed scanner, or a digital camera, or
by any other means of obtaining a digital representation of an

10

15

20

25

30

35

40

45

50

55

60

65

10
image, such as downloading an image via the networks 3320,
3322. The image may be stored in the HDD 3310 by operation
of the processor 3305.

Step 401 is followed by a binarization step 402, during
which a binarized image 412 is generated by the processor
3305 from the acquired image 410. The binarized image may
be stored as the intermediate variable 3359. The binarization
step 402 employs a binarization algorithm that labels each
pixel in the acquired image as either ‘black’ or ‘white’ by
examining the intensity of the pixel in relation to other pixels
in the acquired image. There are many well-known binariza-
tion algorithms available in the art, and any algorithm that
labels pixels as either ‘black’ or ‘white’ based on the pixel
intensity may be employed at the step 402.

At a following step 403, FPs in the binarized image 412 are
located by employing a method of Connected Component
Analysis (CCA). The CCA stage 403 outputs a list 414 of
detected FPs. The method of performing CCA to detect FPs
disclosed herein provides much higher robustness to typical
print-scan distortions such as dot-gain in comparison to prior
FP detection methods. The CCA FP detection algorithm is
described in detail later.

At a following step 404, the list 414 of detected FPs output
from the previous stage 403 is processed using the processor
3305 to resolve the FPs into QR code regions 416. This
process of grouping FPs into QR code regions is referred to as
‘resolving’.

In the arrangements presently disclosed, two resolving
algorithms are employed. The first, referred to as 3/3 resolv-
ing’, forms QR code regions from groups of three detected
finder patterns. The second resolving algorithm, referred to as
2/3 resolving’, determines the possible QR code regions that
could exist if it is assumed that one FP of QR codes is not
detected. By generating the possible QR code regions arising
from this assumption, QR code regions can be resolved when
only two of three finder patterns are initially detected by
applying a later missing FP recovery step. This allows the
realisation of a QR code decoding system that is overall far
more robust than those of the prior art. Both 3/3 and 2/3
resolving algorithms will be explained in detail later.

At a following step 405, an attempt is made to extract
encoded information 418 in each candidate QR code region.
If'the candidate QR code region comprises three detected FPs
(the output of the 3/3 resolving algorithm), then the modules
of'the QR code region are sampled and information extracted
using conventional, well-known methods. Otherwise, if the
candidate QR code region comprises only two FPs (the output
otf'2/3 resolving), then an attempt is made to acquire the third
‘missing’ FP. This process leverages additional information
about detected finder patterns that is made available from the
CCA FP detection method employed at step 403 and will be
described in detail later. If a third finder pattern is acquired
successfully, the QR code is sampled and information
extracted through conventional, well-known methods. The
process of extracting encoded information from a QR code
region is known as ‘decoding’.

The process for decoding one or more QR codes in an
acquired image is terminated at a final step 406.

Connected Components Analysis (CCA)

The process of connected components analysis (CCA)
employed at step 403 of the decoding process 400 is now
described in detail.

Connected Components Analysis (CCA) is a generic name
for processes that identify continuous coloured or like-co-
loured regions in an image, such as black and/or white
regions. The arrangements presently disclosed employ a spe-
cific CCA that provides a much more robust FP detection

US 9,355,293 B2

11

method than that of the prior art, especially in the case where
QR codes have been repeatedly printed and scanned. The
CCA FP detection method 403 also facilitates the application
of a resolving algorithm (employed at step 404) that is more
efficient and precise than that of the prior art. The damaged FP
recovery algorithm employed at step 405 is also facilitated by
the use of the CCA FP detector 403.

The CCA algorithm employed at step 403 and imple-
mented using the processor 3305 groups pixels with the same
intensity in the binarized image 412 generated at step 402 so
that continuous ‘black’ or ‘white’ regions are identified. Spe-
cifically, the CCA algorithm inspects each scanline of the
binarized image 412 sequentially from the topmost scanline
to the bottommost scanline. Consecutive black pixels are
referred to as a single ‘run’. For a given scanline, each run is
inspected to determine if it is connected to a run on a previous
scanline. This is achieved by checking the left-most and right-
most extents of the run, and determining if these extents
overlap left-most and right-most extents of any run on the
previous scanline. If the run is not connected to a previous
run, then the run is established as the beginning of a new
connected component (CC). Otherwise, if the run is con-
nected to a previous run, then the previous run is a member of
a previously established CC, and the run on the current sub-
ject scanline is appended to the previously established CC.

In the case where a run on current subject scanline connects
two or more runs on the previous scanline, then all the CCs
with runs connected to the run on the current subject scanline
are merged to form a single CC. Thus, objects that begin with
several disjoint components that come together at a lower
point in the image may still be identified as being a single CC.

When a CC no longer has connected runs on a subject
scanline, then the CC will be ‘terminated’. That is, the CC is
considered complete, as all of the pixels that belong to that CC
have been identified.

The CCA algorithm employed at step 403 detects QR
finder patterns by searching for CC configurations where one
continuous black CC is completely enclosed by a continuous
white CC that is in turn completely surrounded by a further
black CC. This enclosure relationship is detected by a simple
check performed when a CC is terminated. When terminated,
a subject CC is checked to determine if there is another CC
with left-, right-, top- and bottom-most extents that places it
within the extents of the subject CC. If a CC exists within the
bounds of the subject CC, then both CCs are appended to the
output list as a candidate FP. Otherwise, the CCs are dis-
carded.

Detecting QR finder patterns by searching for their topo-
logical relationship, i.e. the fact that they are composed of one
black CC enclosed entirely within another, allows the above-
described CCA method to provide far more robustness to
print-scan introduced distortions than the methods of the
prior art which rely heavily on the ideal expected appearance
100 of FPs. Another feature of the above-described CCA
method is that several useful FP metrics may be efficiently
computed, and these can be applied to great advantage in the
later resolving 404 and decoding 405 steps ofthe process 400.
Specifically, at least the following information, referred to as
‘metadata’, about detected FPs is determined:

(1) Coordinates of the FP centre (average centre coordi-
nates of the black connected components 101 and 103 of the
FP 100);

(ii) Size of black modules in the FP 100 (the stroke width of
the black connected component 101);

(iii) Size of white modules in the FP 100 (the stroke width
of the white connected component 102);

10

15

20

25

30

35

40

45

50

55

60

65

12

(iv) Rotation of the FP 100 (this angle is modulo-90° and
essentially corresponds to the angle of the sides of the CCs
101 and 102 that is between zero and 90° with respect to the
coordinate system in use);

(v) Confidence of the FP 100 (this is calculated by com-
paring the appearance of the FP with the ideally expected
appearance 100. FPs closely resembling the expected appear-
ance will have confidences toward 100%); and

(vi) Bounding box of the FP 100 (the lefi-, right-, top- and
bottom-most extents of the outer black CC 101).

The FPs identified by the CCA method 403 are formed into
the list 414 in which each list entry may be supplemented by
some or all of the metadata associated therewith.

General Resolving

A detailed description of the resolving process 404, is now
described with reference to FIG. 5. The resolving process 404
begins at an initial step 501 in which the list 414 of detected
FPs are input.

At a following step 502, FPs are grouped into triplets, and
checks are performed to determine if the triplet forms a valid
candidate 3/3 QR code region.

At a following step 503, FPs are grouped into pairs, and
checks are performed to determine if the pairs form a valid
candidate 2/3 QR code region.

The processes employed at steps 502 and 503 are described
in detail later.

The process 404 of resolving terminates at a final step 504.
3/3 Resolving

The process for forming candidate 3/3 code regions, as
employed at step 502, is described with reference to FIGS. 6,
7 and 9. At this point, two pre-determined parameters are
introduced that allow some tolerance to warping and mis-
alignment in the resolving method. These parameters are
denoted as tolerance,,,,,;, and to/erance,, ...,z and both may
be set to 0.2. These tolerances provide for the angles and
distances to vary by 20% and yet still permit the QR region to
be resolved and thus the QR code to be detected. This permits
detection in the presence of warping whilst limiting false
positive detection. The tolerance may be varied as required
based on a desired accuracy of the system.

Turning to FIG. 6, there is shown the general process of
resolving 3/3 regions. At an initial step 601, the list 414 of
detected FPs is input.

At a following step 602, triplets of detected FPs undergo a
series of checks to form a list 606 of “potential” 3/3 regions.
The process for carrying out these checks is described in
detail later.

At a following step 603, each potential QR code region in
the list 606 of ‘potential’ 3/3 regions are inspected to deter-
mine if they contain an ‘internal’ FP. The result of step 603 is
a final list 608 of candidate 3/3 QR code regions. Again, the
process for carrying out step 603 is described in detail later.

The process 502 of forming candidate 3/3 code regions is
terminated at a final step 604.

Find Potential 3/3 Regions

The process 602 for forming the list 606 of potential 3/3
regions, is described with reference to FIG. 7.

The process 602 begins at an initial step 701 in which the
list 414 of detected FPs is input.

At afollowing step 702, alist 710 of triplets is generated by
first finding every combination of three FPs possible from the
input list 414. From each of these combinations, six triplets
are formed by assigning each FP to each of the possible
nominal FP positions of a QR code. That is, each FP is
designated as being in the ‘top-left’ corner, “top-right’ corner,
or ‘bottom-right” of the QR code in one of the six triplets. In
the following description, attributes (such as module size)

US 9,355,293 B2

13

relating to the FP assigned to the top-left will be subscripted
with “‘tI’, and similarly ‘tr’ and ‘bl’ for the top-right and
bottom-left FPs respectively.

At a following step 703, a triplet 712 from the list 710 of
triplets generated at step 702 is selected.

At a following step 704, the triplet 712 is checked to deter-
mine if the three finder patterns are reasonably similar in
module size. The module size is the average of the black and
white module sizes made available from the CCA FP detec-
tion method employed at step 403. In FIG. 8A, an example
801 of three FPs on which this check will fail because the FP
module sizes are not substantially equal. The check for simi-
lar module sizes may be represented by Pseudocode 1 below:

FREE Pseudocode 1 **** Step 704 ****

if
(
(
abs(module__size, — module__size,,)
/
min(module__size,;, module_ size,.)
) <= tolerance,, ,onine
and
(
abs(module__size,; — module_ size;;)
/
min(module__size,,, module__size,;)
) <= tolerance,, ,onine
and
abs(module__size,, - module_ size,.)
/
min(module__size;;, module_ size,.)
) <= tolerance, o nz0
):
check passed
else:
check failed

At a following step 705, the relative angles of the FPs are
checked to determine if the angular orientations of the three
FPs are substantially equal. As previously explained, the
angle of rotation calculated for each FP is modulo 7/2 radians
(90°. Therefore, an adjustment is necessary to determine the
smallest deviation between angles of rotation of FPs. In FIG.
8B, an example 802 of three FPs on which this check will fail
because the angular orientations of the FPs are not substan-
tially equal. This check may be performed by implementing
Pseudocode 2:

FREE Pseudocode 2 *¥*** Step 705 *rE*

if
(
(
abs(angle,; — angle,) <= tolerance,,,g;. x pi/ 2
or
(
pi/ 2 - max(angle,, angle,,) + min(angle,, angle,,)
) <= tolerance,,,g;, x pi /2
)
and
(
abs(angle,; — angle,;) <= tolerance,,g;. x pi/ 2
or
pi/2 - max(angle,, angle;;) + min(angle,; angle;;)
) <= tolerance,,,g;, x pi /2
)
and
(

abs(angle,; — angle,,) <= tolerance, xpi/2

angle

10

15

20

25

30

35

40

45

50

55

60

65

14

-continued

FREE Pseudocode 2 *¥*** Step 705 *rE*

or
(
pi/ 2 - max(angle,;, angle,,) + min(angle,;, angle,,)
)) <= tolerance,,,gz x pi /2
):
check passed
else:
check failed

Note that ‘pi’ refers to the mathematical constant 7.

At a following step 706, a check is performed to determine
if the arrangement of three detected FPs corresponds to a
valid QR code region. This is achieved by first checking that
the distances between the top-left and top-right FPs, and the
top-left and bottom-left FPs are substantially equal. This
check may be performed by implementing Pseudocode 3:

ek pseudocode 3 *#** Step 706 — Part 1 ##%*

vector_X,; , =X;— X,
VECtOr_Yg »=Yq~ Yo
vector_mag,_,, = sqrt(vector_x,_,° + vector_y,_,2)
vector__ Xy ;=X - Xp;
Vector_Y, 1= Yu = Yo
vector_mag,, ,,; = sqrt(vector_X,,_,/ + vector_y,; ,;°)
min_ vector__mag = min(vector_mag,; ,; vector_ X,;_s;)
max__vector__mag = max(vector_mag,; ,, vector_ X, ;)
if max_ vector__mag <= (min_ vector__mag x (1 + tolerance,
check passed
else:
check failed

magnitude)):

Once it has been confirmed that the lengths of the vectors
between the top-left and top-right FPs, and the top-left and
bottom-left FPs are substantially equal, the next step is to
check that the lengths of these vectors are reasonable given
the modules sizes of the FPs. Essentially, this checks that the
lengths of the vectors are within those expected for QR codes
of versions 1 (smallest) to 40 (largest). This check can be
implemented with Pseudocode 4:

ek Pseudocode 4 #*4* Step 706 — Part 2% ***

module_size_ average =
(module__size,; + module_size,. + module__size,;)
/

3
if
(

(
vector_mag,;_, x (1 + tolerance,,,eninae)
=<
14 x module__size__average

)

or

(
vector_mag,_,,. x (1 - tolerance, , . ,,n.z.)
>
170 x module__size_ average

)

or

(
vector_mag,; ;% (1 + tolerance,,,gnisae)
=<
14 x module__size__average

)

or

(

US 9,355,293 B2

15

-continued

16

-continued

#ekk Pseudocode 4 #*** Step 706 — Part 2% ***

FREE Pseudocode 6 *¥**** Step 707 *rE*

vector__mag,; ,, x (1 - tolerance,
>

170 x module_size_ average

magnitude)

)

check failed
else:
check passed

The check for a correct arrangement of detected FPs
involves a check for a substantially orthogonal arrangement
of FPs as well as a check that the assumed assignments of
detected FPs to the top-right and bottom-left positions in the
QR code region are correct. These checks may be performed
by implementing Pseudocode 5:

FREE Pseudocode 5 *¥*** Step 706 — Part 3 *4**

dot__product =
(vector_X,;_,, x vector_ X, ;)
+
(vector_y,_, X vector_ Y, ;)
cross__product_k =
(vector_X,;_,,. x vector_y,; ;)
+
(vector__y,_,. X vector_ X,_p;)
cos__theta = dot__product / (vector__mag,;_,. x vector_mag,; ;)
if cos__theta <= tolerance and cross__product_k > 0:
check passed
else:
check failed

angle

At a following step 707, a check is performed to determine
if the region rotation matches the FP angles. The angle of
rotation of the candidate region is defined as the vector angle
between the top-left and top-right FPs. In FIG. 8C, an
example 803 is shown of three FPs on which this check will
fail because the angular orientations of the FPs does not
match the orientation of the region. This check may be per-
formed by implementing Pseudocode 6:

FREE Pseudocode 6 *¥**** Step 707 *rE*

vector_angle,;_,. = arctan2(vector_y,;_,., vector_ X,;_,.)
if vector__angle,;_,,.<0:

vector__angle,;_,,. = vector__angle,_,,. + (2 x pi)
vector__angle,;_,. = ((4 x vector__angle,; ,)mod(2 x pi)/4)
if
(

abs(angle,; - vector__angle,;_,,) <= tolerance
or

(

xpi/2

angle

pi/2

- max(angle,;, vector__angle,;_,.)

+ min(angle,;, vector__angle,;_,.)
) <= tolerance, xpi/2

angle

abs(angle,, — vector__angle,; ,.) <= tolerance,
or

(

xpi/2

ngle

pi/2

- max(angle,., vector__angle,;_,.)

+ min(angle,,, vector__angle,; ,,)
) <= tolerance, xpi/2

angle

>

10

20

25

30

35

40

45

50

55

60

65

abs(angle,; — vector__angle,;_,.) <= tolerance
or

xpi/2

angle

pi/2
- max(angle,;, vector__angle,; ,.)
+ min(angle,;, vector__angle,;_,.)
) <= tolerance,,,gz x pi /2
)
):
check passed
else:
check failed

If all the above checks 704-707 are successful, as tested at
step 714, the triplet 712 of FPs is appended to an output list
606 of potential 3/3 regions at step 708. Note that each output
potential region has associated with it a confidence value
based on the confidences of the region’s three FPs. This
confidence can be calculated by implementing Pseudocode 7:

FREE Pseudocode 7 *HEE

confidence,

region

= (confidence,; + confidence,. + confidence,,;) / 3

The confidence value can be appended to the metadata for
each FP in the list potential FPs.

Ifthere are remaining triplets in the list of triplets generated
at step 702, tested at step 716, processing returns to step 703.
Otherwise, if all triplets have been processed, then the process
602 of forming the list 606 of potential 3/3 regions, is termi-
nated at a final step 709.

Find True Regions

The process 603 for forming a list of true 3/3 regions, is
described with reference to FIG. 9. Valid QR code regions
cannot contain additional detected finder patterns. Based on
this requirement, the QR code region 1000 of FIG. 10A is a
valid region, as there are no additional detected finder patterns
within the bounds 1001 of the region 1000. The QR code
region 1010 seen in FIG. 10B is not a valid QR code region as
the region contains an additional detected FP 1012 with the
region bounds 1011. An exception is made when the confi-
dence of an “internal’ FP is considerably less than that of the
three FPs of the region. This is because, in some rare cases,
alignment patterns 1022 can be detected as finder patterns as
shown in 1020 of FIG. 10C. In this situation the confidence of
the alignment pattern 1022 will be considerably lower than
those of the detected finder patterns 1023, 1024 and 1025.

Turning back to FIG. 9, the process 603 of finding true 3/3
regions begins at an initial step 901 in which lists 606 of
potential 3/3 regions and detected FPs are input.

At a following step 902, a potential 3/3 region 910 is
selected from the list 606 input in step 901.

At afollowing step 903, it is determined whether the poten-
tial 3/3 region contains an additional finder pattern of high
confidence. Essentially, all of the detected finder patterns
except for the finder patterns forming the potential code
region are checked to determine if they are inside the extents
of the potential 3/3 region.

The processes for determining if a particular finder pattern
is within a potential code region will now be described. FIG.
11 shows a QR code region 1100 comprised of top-left 1103,
top-right 1101 and bottom-left 1102 FPs. A finder pattern
1109 is to be checked to determine if it is within the region

US 9,355,293 B2

17
1100. First, vectors 1105 and 1106 between the top-left FP
1103 and the top-right 1101 and bottom-left 1102 FPs respec-
tively are calculated. This can be achieved by implementing
Pseudocode 8:

FREE Pseudocode 8 *H**

vector_X,_,. =X;— X,
Vector_Yy »=Ya= Yo
Vector_X,_,;=X,;— Xy

Vector_Y, p1=Yu = Yo

The position of the unknown corner of the region 1104 is
then calculated, as shown in Pseudocode 9:

FREE Pseudocode 9 *H*E

Xp = Xg +vector__x,_,,+ vector_Xx,_,.
Yor = Ya+ VECIOI_y,_p;+ VECIOL_Y 4

Next, vectors 1107 and 1108 between the bottom-right
corner of the region 1104 and the top-right 1101 and bottom-
left 1102 FPs respectively are calculated. This can be
achieved by implementing Pseudocode 10:

k% pseudocode 10 ****

vector__ X, ,. = —vector__ X, ;;
vector_y,,_, = —vector_y, z;
vector__ X, ;= -vector_X,_,,.
vector_y,, . =-vector_y,_,.

Vectors 1110 and 1111 from the top-left 1103 and bottom-
right 1104 corners of the region to the additional finder pat-
tern to be checked 1109 are then constructed. This can be
achieved with Pseudocode 11:

ek pseudocode 11 ****

vector_X,_s =Xp — Xy
vector_y, 4=V = Va
vector_Xg,_p, = Xg, — Xp,
Vector_Yp, 5 =Yg = Yor

Finally, it is determined whether the additional FP 1109
lies within the region 1100 by determining the following
conditions:

1. if the angle of the vector 1110 between the top-left FP
1103 and the additional finder pattern 1109 is between
the angles of the vectors 1105 and 1106 between the
top-left FP 1103 and the top-right 1101 and bottom left
1102 FPs respectively; and

2. if the angle of the vector 1111 between the bottom right
corner 1104 and the additional finder pattern 1109 is
between the angles of the vectors 1107 and 1108
between the bottom right corner 1104 and the top-right
1101 and bottom left 1102 FPs respectively.

It both conditions (1) and (2) are found to be true, then it is

determined that the FP 1109 does lie within the region 1100.

This check can be accomplished by implementing
Pseudocode 12:

10

20

30

35

40

45

50

55

60

65

18

ekt Pseudocode 12 *4**

vector__angle,;_,. = arctan2(vector_y,;_,., vector_ X,;_,.)
if vector__angle,;_,,.<0:
vector__angle,;_,. = vector__angle,; ..+ (2 X pi)
vector__angle,;_,; = arctan2(vector__y,;_,;, vector_X,_;)
if vector__angle,;_;;<0:
vector__angle,;_,; = vector__angle,; ,;+ (2 X pi)
vector__angle,,_,, = arctan2(vector_y,,. ,., Vvector_ X, ,.)
if vector__angle,,._,,. < 0:
vector__angle,,_,,. = vector__angle,,_,,.+ (2 x pi)
vector__angle,,_,; = arctan2(vector_y,,_z;, Vector_ Xg,_p;)
if vector__angle,,._,, < 0:
vector__angle,,_,; = vector__angle,,_,;+ (2 X pi)
vector__angle;, s, = arctan2(vector_yy, g, vector_Xg,_z,)
if vector__angles, g, < 0:
vector_angle,,_;, = vector_angle,, 5 + (2xpi)
vector__angle,,_g, = arctan2(vector_y,_,, vector_X,_g,)
if vector__angle,_5, < 0:
vector__angle,_g, = vector_angle,,_g, + (2 X pi)
min_ vector__angle, = min(vector__angle,,_,,, vector__angle,_,,)
max_ vector_angle,; = max(vector__angle, ., vector_angle,; ;)
min_ vector__angle,, = min(vector__angle,,._,., vector__angle,,_;;)
max_ vector_angle,, = max(vector__angle,,._,., vector__angle,,_,;)
if
(
max__vector__angle, — min__vector__angle,
=<
(
2xpi
max__vector__angle,
+
min_ vector__angle,;

vector__angle,_g, >=min_vector_angle,
and
vector__angle,_g, <= max_ vector_angle,
):
top left check passed
else:
top left check failed
else:
if
(
vector__angle,_g, >=max_ vector_angle,
or
vector__angle, s, <=min_vector_angle,
):
top left check passed
else:
top left check failed
if
(
max_ vector__angle,, — min_ vector_ angle,,
=<

2xpi

max_ vector__angle,,.
+

min_ vector__angle,,

vector__angle,, g, >= min__vector__angle,,.
and
vector__angle,, g, <= max__vector_angle,,
):
bottom right check passed
else:
bottom right check failed
else:
if
(
vector__angle,, g, >= max__vector_angle,,
or

US 9,355,293 B2

19

-continued

Rk Pseudocode 12 ****

vector__angle,,_ <= min_ vector__angle,,

bottom right check passed
else:
bottom right check failed
if
(
top left check passed
and
bottom right check passed

check passed
else:
check failed

The fact that QR codes must contain a 4 module size quiet
region surrounding them can be exploited to enlarge potential
3/3 code regions for the purposes of the internal FP check of
step 903. This will reduce the number of false positive 3/3
regions that are identified as true 3/3 regions. Typically, an
additional finder pattern cannot occur within approximately
11 module sizes of the centres of detected finder patterns of a
code region. This takes into account both the 4 module quiet
zone and the width of two half finder patterns (7 modules).
The size of the potential 3/3 region used for the internal FP
check could thus be enlarged by moving the four corners of
the region outward by approximately 11 module sizes.

If it is determined that a potential 3/3 region contains an
additional detected finder pattern, it is then determined
whether the confidence of the additional detected finder pat-
tern is considerably less than that of the detected finder pat-
terns of the region. This check can be accomplished by imple-
menting Pseudocode 13:

ek pseudocode 13 ****

if

confidence,
=<
(
0.75
X
min(confidence,;, confidence,
)
):
check passed
else:
check failed

confidence,,)

>

Turning back to FIG. 9, if it is determined in step 903 that
a potential 3/3 region does not contain an additional detected
finder pattern of confidence similar to the detected finder
patterns of the potential region, the potential 3/3 region is
saved as a true 3/3 region in a following step 904. The saving
may be performed to one of the intermediate variables, such
as the variable register 3360 in FIG. 33B. An accumulation of
these savings commences formation of the list 608.

If there are further unprocessed potential 3/3 regions, as
tested at step 906, processing returns to step 902. Otherwise,
if all potential 3/3 regions have been processed, then the
process of forming the list 608 of true 3/3 regions, employed
at step 603, is terminated at a final step 905.

2/3 Resolving

A detailed description of the process 503 for forming can-
didate 2/3 regions, is described with reference to FIGS. 12,
13,16 and 19. The same two pre-determined tolerance param-

10

15

30

35

40

45

50

55

60

65

20

eters that were used in the previous description of 3/3 resolv-
ing, tolerance,,,.;, and to/erance,, Will also be used in
resolving 2/3 regions. The same value of 0.2 will be used for
both parameters.

Turning to FIG. 12, there is shown the general process 503
of'resolving 2/3 regions. At an initial step 1201, the list414 of
detected FPs is input.

At a following step 1202, finder pattern pairs 1210 are
found. These are pairs of finder patterns matching a number of
criteria indicating that they potentially form part of a QR
code.

At a following step 1203, potential 2/3 regions 1212 are
found. Potential 2/3 regions 1212 are regions of the image
410/412 in which a QR code with an undetected finder pattern
could potentially exist.

At a following step 1204, the potential 2/3 regions 1212
found in step 1203 are checked to determine if they contain
‘internal’ FPs in the same way that potential 3/3 regions are
checked in step 603. Potential 2/3 regions that do not contain
such ‘internal’ FPs are determined to be true 2/3 regions 1214.

The process 503 of forming candidate 2/3 regions is termi-
nated at a final step 1205.

Find Finder Pattern Pairs

The process 1202 of finding finder pattern pairs is now
described in more detail with reference to FIG. 13. At an
initial step 1301, the list 414 of detected finder patterns is
input.

At a following step 1302, a list 1312 of finder pattern pairs
is generated by finding every combination of two FPs pos-
sible from the input list. For the purposes of this description,
the two finder patterns in each finder pattern pair will be
arbitrarily assigned the labels A and B. In the following
description, attributes (such as module_size) will be sub-
scripted with ‘A’ and ‘B’ to indicate which FP they refer to.

At a following step 1303, a pair 1314 of finder patterns is
selected from the list 1312 generated in step 1302.

At a following step 1304, the finder pattern pair 1314 is
checked to determine if the two finder patterns are reasonably
similar in module size. FIG. 14A shows an example 1400 of
where this check will not succeed. It can be seen that the
module sizes of finder patterns 1401 and 1402 are consider-
ably different. The check for similar module sizes may be
represented by Pseudocode 14:

ekt Pseudocode 14 *#** Step 1304 *4**

if
(
(

abs(module__size , — module__sizez)

/

min(module__size ,, module__sizez)
) <= tolerance

)

‘magnitude

check passed
else:
check failed

At a following step 1305, the angles of the FPs are checked
to determine if the angular orientations of the two FPs are
substantially equal. It must be noted that the angle of rotation
for each finder pattern is modulo 7t/2 radians. Therefore, an
adjustment is necessary to determine the smallest deviation
between the angles of rotation of the two finder patterns. FI1G.
14B shows an example 1410 of where this check will not pass.
It can be seen that the angles of finder patterns 1411 and 1412
are considerably different. This check may be performed by
implementing Pseudocode 15:

US 9,355,293 B2

ek pseudocode 15 **** Step 1305 ****
if
(
(
abs(angle, - anglep) <= tolerance,,, ., X pi/ 2
or
(pi/ 2) - max(angle,, angle) + min(angle ;, anglez)
<=
tolerance,,,gz. X pi/ 2
)
)
check passed
else:
check failed

Note that “pi’ refers to the mathematical constant .

At a following step 1306 the angle of the vector between
the FPs checked to determine if it corresponds to the angles of
the finder patterns for one of two possible 2/3 code region
configurations. The two possible configurations of 2/3
regions are shown in FIGS. 15A and 15B. The configuration
1500 of FIG. 15A, in which the two detected FPs correspond
to FPs along the side of the QR code 1501, will be referred to
as a ‘normal’ type 2/3 region. The configuration 1510, of FIG.
15B, in which the detected FPs are on the diagonal of the QR
code 1511, will be referred to as a ‘diagonal’ type 2/3 region.
FIG. 15C shows an example 1520 of a pair of finder patterns
to be checked. The check determines if the angle 1524 of the
vector 1523 between the finder patterns 1521, 1522 is con-
sistent with either of the valid configurations 1500 and 1510
within the allowed angular tolerance tolerance,,, ... A conse-
quence of this check is that the type of the FP pair, being
normal or diagonal, is established. This check can be imple-
mented using Pseudocode 16:

ek pseudocode 16 ****

vector_Xy_p=Xp— Xy
vector_y4 p=Yp =Y
vector_mag,_p = sqrt(vector_xX,_p> + vector_y . p°)
vector__angle,_p = arctan2(vector_y 4_g, vector_ X 4_z)
if vector__angle,_5<0:

vector__angle ,_p = vector__angle,_z+ (2 x pi)
vector__angle, ' = ((4 x vector__angle ;_z)mod(2 x pi) / 4)
anglediff , = abs(angle , — vector__angle,_5")
anglediff, =

min

anglediff ,,

(
pi/2

max(angle ;, vector__angle ;_»")
+
min(angle 4, vector__angle ;_z")

)

)
anglediff. 45, = abs(anglediff, — pi/4)
anglediffy = abs(anglep — vector__angle,_z")
anglediff, =

min

anglediffy,
(
pi/2

max(angleg, vector_angle,_z")
+
min(angleg, vector__angle ;_z")

10

15

30

35

40

45

50

55

60

65

22

-continued

k% pseudocode 16 ****

anglediff. 45, = abs (anglediffz - pi/4)
if
(

(

anglediff; <tolerance,,,.;,
and
anglediffy <tolerance,,

)

or

Xpi/2

Xpi/2

ngle

anglediff 45 , <tolerance,
and
anglediff_ 45, <tolerance,

Xpi/2

angle

Xpi/2

angle

anglediff 45, <anglediff,
and
anglediff 455 <anglediffy
):
region_type = diagonal
else:
region_ type = normal
check passed
else:
check failed

At a following step 1307, a check is made to determine if
the length of the vector between the two FPs is within the
limits for QR code versions 1-40, allowing for the magnitude
tolerance. This check can be performed by implementing
Pseudocode 17:

ekt Pseudocode 17 *4**

module_size_ average = (module__size , + module_sizez) /2
if (region__type == normal):

if
(
(
vector_mag_g X (1 + tolerance,, ;o i)
=<
14 x module__size_ average
)
or
(
vector_mag, X (1 - tolerance,, ,,.;1..0.)
>
170 x module_ size_ average
)
check failed
else
check passed
else:
if
(
(
vector_mag, X (1 + tolerance,, . ,.;10.0.)
=<
1.41 x 14 x module__size_ average
)
or
(
vector_mag_g X (1 - tolerance,, ;i)
>
1.41 x 170 x module__size__average
)
):
check failed
else
check passed

US 9,355,293 B2

23

If all the above checks 1304-1307 are successful, as tested
at step 1310, the pair 1314 of FPs is appended to an output list
1210 of FP pairs at step 1308. If there are remaining FP pairs
in the list 1312 generated at step 1302, as tested at step 1311,
processing returns to step 1303. Otherwise the process 1202
of finding FP pairs is terminated at a final step 1309.

Find Potential 2/3 Regions

The process 1203 of finding potential 2/3 regions is now
described in more detail with reference to FIG. 16. At an
initial step 1601, the list 1210 of previously found finder
pattern pairs is input.

At a following step 1602, a finder pattern pair 1610 is
selected from the list 1210 of finder pattern pairs input pre-
viously at step 1701.

If the selected finder pattern pair 1610 has a “type” that is
“diagonal”, as tested in step 1606, one diagonal type potential
2/3 region is generated in step 1603. If the selected finder
pattern pair “type” is “normal”, two normal type potential 2/3
regions are generated in step 1604. The implementations of
steps 1603 and 1604 will be described subsequently. Note that
for each potential 2/3 region 1612 output from steps 1603 and
1604, a confidence value based on the confidences of the
region’s two detected FPs is calculated. This confidence can
be calculated by implementing Pseudocode 18:

ek pseudocode 18 ****

confidence = (confidence 4 + confidencep) / 2

region

If there are further unprocessed finder pattern pairs, deter-
mined at step 1607, processing returns to step 1602. Other-
wise, the process 1203 of finding potential 2/3 regions is
terminated at a final step 1605. The processing of step 1203
establishes a list 1212 of determined potential 2/3 regions
which may be stored in the memory 3334.

The process 1603 of generating a diagonal type potential
2/3 region will now be described in detail. FIG. 17A shows an
example 1700 of a diagonal type 2/3 region 1703 formed from
apair of detected finder patterns 1701 and 1702. As shown in
the region of 1700, in the diagonal case the detected finder
patterns correspond to the top-right and bottom-left FP posi-
tions in the QR code region.

Generating a potential 2/3 region from a finder pattern pair
essentially involves determining the two possible locations
for missing finder patterns in the region. This determines the
extents of the potential 2/3 region. FIG. 18A shows an
example 1800 of how the two possible locations of missing
finder patterns are determined for diagonal type potential 2/3
regions. First, one of the two detected finder patterns 1801,
1802 is selected as the reference finder pattern (finder pattern
1801 being selected in this example). Next, two vectors 1804
and 1806 are formed at angles offset by 45° 1808 from the
vector 1803 from the selected reference finder pattern 1801 to
the other detected finder pattern 1802. The lengths of the
vectors 1804 and 1806 are calculated from the length of the
vector 1803 as shown in Pseudocode 19:

k% pseudocode 19 ****

vector__mag,eos = vector__magygos / 1.41
vector__mag,gos = VeCtor__mag, gz / 1.41

Note that the constant 1.41 approximates the square root of
2 in the above pseudocode.

15

25

30

40

45

60

65

24

The endpoints of the vectors 1804 and 1806 determine the
two possible locations of missing finder patterns 1805 and
1807. With the two possible locations of missing finder pat-
terns determined, the potential 2/3 region is fully defined and
step 1603 is complete.

The process of generating two normal type potential 2/3
regions 1604 will now be described in detail. FIG. 17B shows
an example of two normal type 2/3 regions 1713 and 1714
formed from a pair of detected finder patterns 1711 and 1712.
As shown in 1710, in normal type 2/3 regions the detected
finder patterns correspond to two adjacent finder pattern posi-
tions on one side of the code region. For this reason, there can
betwo potential 2/3 regions formed from a single normal type
finder pattern pair, as shown in 1710. Essentially, based on the
detected finder pattern pair 1711, 1712, there could be a QR
code with a missing third finder pattern in either of the regions
1713 and 1714. For this reason, both potential 2/3 regions are
generated in step 1604.

Generating the two potential 2/3 regions for the finder
pattern pair essentially involves determining, for each poten-
tial 2/3 region 1713 and 1714, the two possible locations of
missing finder patterns. This process is the same for all nor-
mal type potential 2/3 regions (i.e. it is the same for both 1713
and 1714), and is described subsequently. Once the process
described below has been completed for both potential 2/3
regions (such as 1713, 1714) formed from a finder pattern
pair, the step 1604 is complete.

FIG. 18B shows an example 1810 of a normal type poten-
tial 2/3 region. For normal type finder pattern pairs such as
1811, 1812, one normal type potential 2/3 region is formed on
each side of the vector 1813 between the two detected finder
patterns. Just one of the two possible potential 2/3 regions
formed from finder pattern pair 1811, 1812 is shown in 1810.

The process of determining the two possible locations of
missing finder patterns for the potential 2/3 region 1810
begins with forming two vectors 1814 and 1816 offset at 90°
from the vector 1813 between the detected finder patterns
1811, 1812. The lengths of the vectors 1814 and 1816 are the
same as that of the vector 1813. The endpoints of the vectors
1814 and 1816 determine the two possible locations of miss-
ing finder patterns 1815 and 1817.

Find True 2/3 Regions

The process 1204 of finding true 2/3 regions is now
described in more detail with reference to FIG. 19. As previ-
ously explained in the description of 3/3 resolving, valid QR
code regions cannot contain additional detected finder pat-
terns, however an exception is made for when the detection
confidence of an ‘internal’ FP is much lower than the detected
finder pattern pair of the code region.

Ataninitial step 1901, a list 1212 of previously determined
potential 2/3 regions is input.

At a following step 1902, a potential 2/3 region 1910 is
selected from the list 1212 input in step 1901.

At a following step 1903, it is determined whether the
potential 2/3 region 1910 contains an additional finder pattern
of high confidence. Essentially, all of the detected finder
patterns except for the finder patterns forming the potential
2/3 region are checked to determine if they are inside the
extents of the potential 2/3 region.

The process for determining if a particular FP is within a
potential 2/3 region is essentially the same as that previously
described for 3/3 resolving. To apply this process to potential
2/3 regions, the detected and missing FP locations must first
be assigned to the standard FP position labels top-left, top-
right, bottom-left and bottom-right. The process of assigning
standard FP position labels to the detected and possible miss-

US 9,355,293 B2

25

ing FP locations will now be described for both normal and
diagonal type potential 2/3 regions with reference to FIGS.
20A and 20B.

A diagonal type potential 2/3 region 2000 is shown in FIG.
20A. An additional finder pattern 2009 is to be checked to
determine if it is within the potential 2/3 region. First, one of
the missing finder pattern locations 2003, 2004 is arbitrarily
assigned the position of top-left FP. Subsequently, the other
possible missing FP location is assigned the position of bot-
tom-right FP. The two detected FPs 2001, 2002 are then
assigned the positions of top-right and bottom-left FPs
accordingly. The process of determining if the additional FP
2009 lies within the potential 2/3 region 2000 can now be
carried out by the method previously described for 3/3 resolv-
ing, using the following information:

(1) Vectors 2005 and 2006 between the top-left FP 2003 and

the top-right 2001 and bottom-left 2002 FPs;

(i) Vectors 2007 and 2008 between the bottom-right FP
2004 and the top-right 2001 and bottom-left 2002 FPs;
and

(iii) Vectors 2010 and 2011 from the top-left 2003 and
bottom-right 2004 FPs to the additional finder pattern to
be checked 2009.

A normal type potential 2/3 region 2020 is shown in FIG.
20B. An additional finder pattern 2029 is to be checked to
determine if it is within the potential 2/3 region. First, one of
the detected finder pattern locations 2022, 2023 is arbitrarily
assigned the position of top-left FP. Subsequently, the other
detected FP location is assigned the position of bottom-left
FP. The two possible missing FP locations 2021, 2024 are
then assigned the positions of top-right and bottom-right FPs
accordingly. The process of determining if the additional FP
2029 lies within the potential 2/3 region 2020 can now be
carried out by the method previously described for 3/3 resolv-
ing, using the following information:

(1) Vectors 2025 and 2026 between the top-left FP 2023 and

the top-right 2021 and bottom-left 2022 FPs;

(ii) Vectors 2027 and 2028 between the bottom-right FP
2024 and the top-right 2021 and bottom-left 2022 FPs;
and

(iii) Vectors 2030 and 2031 from the top-left 2023 and
bottom-right 2024 FPs to the additional finder pattern to
be checked 2029.

In the methods described previously for determining
whether an additional FP lies within a potential 2/3 region, the
extents of the potential 2/3 region were based on the nominal
predicted locations of the two possible missing finder patterns
of'the 2/3 region. Alternative methods may be used to define
the extents of potential 2/3 regions for the internal FP check.
One alternative is to apply the tolerances tolerance,, .,z
and tolerance,,.;, in determining the possible locations of
missing finder patterns such that the extents of potential 2/3
regions are as small as possible (within the allowed toler-
ances). This would be a more conservative approach than the
approach detailed above, accounting for the possibility that
warping has resulted in a smaller than expected QR code
region. This would reduce false negatives, which are situa-
tions where a valid QR code region is erroneously eliminated
by the internal FP check.

The fact that QR codes must contain a 4 module size quiet
region surrounding them can be exploited to enlarge potential
2/3 code regions for the purposes of the internal FP check of
step 1903. This will reduce the number of false positive 2/3
regions that are identified as true 2/3 regions. Typically, an
additional finder pattern cannot occur within 11 module sizes
of'the centres of detected finder patterns ofa code region. This
takes into account both the 4 module quiet zone and the width

15

20

35

40

45

50

26
of'two half finder patterns (3.5 modules each). The size of the
potential 2/3 region used for the internal FP check could thus
be enlarged by moving the four corners of the region outward
by 11 module sizes.

If it is determined that a potential 2/3 region contains an
additional detected finder pattern, it is then determined
whether the confidence of the additional detected finder pat-
tern is considerably less than that of the detected finder pat-
terns of theregion. This check can be accomplished by imple-
menting Pseudocode 20:

#ekk Pseudocode 20 *H**

if

(
confidence,
=<

0.75
X
min(confidence 4, confidence)

)

check passed
else:
check failed

Turning back to FIG. 19, if it is determined in step 1903 that
a potential 2/3 region does not contain an additional detected
finder pattern of confidence similar to the detected finder
patterns of the potential region, the potential 2/3 region is
saved into memory 3334 as a true 2/3 region in a following
step 1904.

If there are further unprocessed potential 2/3 regions, as
tested at step 1906, processing returns to step 1902. Other-
wise, if all potential 2/3 regions have been processed, then the
process 1204 of forming the list 1214 of true 2/3 regions, is
terminated at a final step 1905.

The list 608 of true 3/3 regions and the list 1214 of true 2/3
regions collectively form the (expected) QR code regions 416
described above as being output from the resolving process
404.

Decoding Process

The decoding process 405 is described with reference to
FIG. 21. The decoding process 405 attempts to extract infor-
mation from each 3/3 region (608) and 2/3 region (1214) in
turn. A detected finder pattern may be shared by a number of
3/3 regions and 2/3 regions. This is because, at the conclusion
of step 404, the presence of encoded data in each of the 3/3
and 2/3 regions is as yet unknown. That is, the regions 416
generated at step 404 are not confirmed QR codes, but rather
regions likely to contain QR codes.

At step 405, a region is confirmed as a QR code if data is
successfully extracted from the region. Furthermore, QR
codes may not share finder patterns with other QR codes.
Therefore, once a QR code region is successfully decoded,
any remaining regions that share finder patterns with the
successfully decoded code region are not processed. Thus,
processing time is not wasted in attempts to decode regions
that cannot form a QR code.

The decoding process 405 begins at an initial step 2101 in
which the list or lists of 3/3 regions and 2/3 regions are input.

At a following step 2102, all 3/3 regions are processed in
turn. This processing step, which involves attempting to
extract coded information from code regions, is described in
detail later.

At a following step 2103, all 2/3 regions are similarly
processed.

US 9,355,293 B2

27

The decoding process 405 terminates at a final step 2104.

The process of processing 3/3 regions employed at step
2102 is described in detail with reference to FIG. 22.

At an initial step 2201, the list of 3/3 regions is received.

Ata following step 2202, the 3/3 regions are sorted by their
region confidences to ensure that regions with higher confi-
dences are processed before regions with lower confidences.

At a following step 2203, the next remaining 3/3 region in
the list created in step 2202 is selected.

At a following step 2204, an attempt is made to decode a
region. Decoding uses the three FPs of the region to identify
the coded content of the QR code. Specifically, the locations
of each of the three FPs can be used to define a grid of data
module locations from which the data modules in the code
region are sampled and the encoded data is extracted. The
process of sampling data modules and extracting coded data
from a QR code once all three FPs of the code have been
acquired is well known in the prior art and need not be
described further.

If the region is successfully decoded, then any 3/3 regions
remaining to be processed that share FPs with the current
region are discarded at a following step 2205.

Also, at step 2206 which follows step 2205, any 2/3 regions
remaining to be processed that share FPs with the current
region are also discarded.

If'there are 3/3 regions remaining to be processed, tested at
step 2208, processing continues at step 2203. Where the
decoding of step 2204 fails, the test of step 2208 follows.

Once all 3/3 regions have been processed, the process 2102
is terminated at a final step 2207.

The processing of 2/3 regions employed at step 2103 is
described in detail with reference to FIG. 23.

At an initial step 2301, the list of remaining 2/3 regions is
received, noting that some 2/3 regions may have been dis-
carded in step 2206.

Ata following step 2302, the 2/3 regions are sorted by their
region confidences to ensure that regions with higher confi-
dences are processed before regions with lower confidences.

At a following step 2303, the next remaining 2/3 region in
the list created in step 2302 is selected.

At a following step 2304, a third FP is sought in a process
that is described in detail later.

If a missing FP is successfully found in step 2304, process-
ing continues at a following step 2305 in which an attempt is
made to decode the region in a decode process identical to that
employed at step 2204 using the two selected detected finder
patterns from step 2303 and the third finder pattern detected at
step 2304. Decoded data may then be stored in the memory
3334 as, for example, the output variable 3362.

Ifdecoding is successtful, then any 2/3 regions remaining to
be processed that share FPs with the successfully decoded
region are removed at step 2306 in a similar process as that
employed at step 2206.

If'there are 2/3 regions remaining to be processed, tested at
step 2308, processing continues at step 2303. Where the
detection at step 2304, or the decoding at step 2305 fails, the
test of step 2308 follows.

Once all the 2/3 regions have been processed, the process
2103 is terminated at a final step 2307.

Detect Missing FP

Template correlation is a known and very robust method
for detecting and locating features in an image. In the context
of'the present disclosure, it is desired to detect and locate QR
FPs. Template correlation, however, has several fundamental
disadvantages. Firstly, template correlation would require, in
the context of the present disclosure, that the size of the QR
FPs be pre-determined. Secondly, template correlation would

10

15

20

25

30

35

40

45

50

55

60

65

28

require that the rotational orientation of the QR FPs be pre-
determined. These two restrictions would greatly limit the
functionality of any QR FP detection system implementing
template correlation. In the particular case of printed and
scanned QR codes, there is almost always some rotational
misalignment of the QR code in the scanned image.

In addition to the above two mentioned limitations, tem-
plate correlation is a computationally expensive operation.
Consequently, a QR FP detection system that employs tem-
plate correlation on an entire scanned image could be imprac-
tically slow.

The present inventors have nevertheless developed a QR
FP detection system that utilises template correlation in a
manner that draws on its robustness, but overcomes the
above-mentioned limitations. Broadly, the presently dis-
closed system employs the information gathered by the pre-
viously performed CCA to form a template that is adapted to
the FP to be searched for, thereby maximizing correlation
strength. In essence, any distortions and misalignments intro-
duced by printing and scanning cycles can be estimated from
their effects on the two already detected FPs. This informa-
tion can then be used to search for a missing damaged FP with
greater efficiency and accuracy.

In addition, small search regions in the image may be
estimated from the locations of the two already detected FPs.
These search regions are the only possible areas in which a
third missing FP can be located. Thus, the computationally
expensive operation of template correlation is restricted to a
small proportion of the image, resulting in a far more efficient
detection system.

The process of detecting a missing FP, employed at step
2304 is described with reference to FIG. 24.

The process begins at an initial step 2401 in which a 2/3
region is input.

At a following step 2402, a pattern matching template is
formed with reference to the two already detected FPs in the
2/3 region. Two effective methods for forming a pattern
matching template are described in detail later.

At a following step 2403, candidate search regions are
formed. A candidate search region is a small image region in
which a third, missing FP may exist. The process 2403 of
forming candidate search regions is described later.

At a following step 2404, the pattern matching template
generated at step 2402 is applied to each candidate search
region formed at step 2403. This step attempts to detect the
third, missing FP by template correlation. If a missing FP is
detected, and step 2404 thus successful, the 2/3 region is
determined to be ‘complete’. That is, all three FPs have been
detected, and the data encoded in the QR code may be
extracted. Therefore, if the missing FP is detected, then pro-
cessing continues at step 2405, in which the ‘complete’region
is appended to a list to be output from the process 2304.
Otherwise, the 2/3 region does not form a valid QR code, and
is discarded. The process 2304 of detecting a missing FP is
terminated at step 2406.

Forming Template—from Metadata

One process of forming a pattern matching template from
CCA information, that may be employed at step 2402, is
described in detail with reference to FIG. 25 as step 2402a.

The process 24024a begins at an initial step 2501 in which a
2/3 region is input.

At a following step 2502, information from CCA for the
two already detected FPs in the 2/3 region is acquired. As
previously mentioned, CCA provides the following informa-
tion regarding a detected FP:

(1) Coordinates of the FP centre;

(i1) Size of black modules in the FP;

US 9,355,293 B2

29

(iii) Size of white modules in the FP;

(iv) Rotation of the FP;

(v) Confidence of the FP; and

(vi) Bounding box of the FP.

The size of black and white modules forming FPs gives an
indication of the effect of dot gain. Thus, when two of three
FPs in a QR code region have been detected, dot gain infor-
mation can be used to locate the third, missing FP. It is useful
to obtain an average of module sizes between the two detected
FPs. These averages may be computed by implementing
Pseudocode 21:

ek pseudocode 21 **x*

average__module_ size,,, ;=

(module__sizep e, g0 + module_sizey,er, 51) /2
average_ module_ size,,;. =

(module_size, .. g0+ module_size, e 51)/ 2

At a following step 2503, information acquired from CCA
is used to generate a pattern matching template. In step 2503,
atemplate 2700 (seen in FIG. 27) of a QR FP is formed in the
memory 3334 conforming to the following ratios of black and
white widths, as in Pseudocode 22. The label “average_mod-
ule_size” is abbreviated as “ams” for convenience of repre-
sentation.

ek pseudocode 22 *xx*

AMSy;, .5 © AMS, 50 0 3 X aAMS,,, 5 © AMS,
average_ module_ sizey;,

average_ module_ size,,;;.:

3 x average__module_ size,;,
average__module_ size,, ;. .
average__module_ sizey;,

white * AMSp gk

As seen in FIG. 27, the outer black region 2701 of the FP
template 2700 will have a stroke width 2704 of average_mod-
ule_size,,, .. Also, the white region 2702 will have a width
2705 of average_module_size, . Lastly, the inner black
region 2703 will have a width 2706 of three times average_
module_size,,, ;.

Subsequently, the template 2700 is rotated to account for
the angle of the already detected FPs. This is seen in FIG. 28
with reference to a rotated template 2800 where the average
angle 2801 (angle,,.,,..) between the two detected FPs,
angle,, and angle,,, is computed by implementing
Pseudocode 23:

ek pseudocode 23 *rx*

if
abs(angleg,, — angleg,;)
>

(
pi/2

max(angleg,q, angleg,)
+
min(angleg,q, angleg,;)
)
):
angle,

average =

min(angle,,,, angle,,;)

pi/2

10

15

20

25

30

35

40

45

50

55

60

65

30

-continued

ek pseudocode 23 *rx*

max(angleg,q, angleg,)

)
/

2
ifangle,,.ug < 0:
angle,yerage =Pi/ 2 + angle,, orog,
else:
angleg, ., qg. =
angleg,o
+
angleg,
)
/
2

A detailed description of rotating a template by a specified
angle is not provided herein as a variety of well-known meth-
ods may be employed, such as an affine transformation with
interpolation.

Once a template 2800 incorporating dot gain information
and angular rotation information is formed, the process 24024
of forming a pattern matching template from CCA informa-
tion is terminated at a final step 2504.

Forming Template—Cut Out and Average

FIG. 26 shows an alternative method 24025 of forming a
pattern matching template, which may be employed at step
2402. Here, a template is created by cutting out from the input
or binarized image 410, 412, the two already detected FPs,
and then scaling and averaging those two already detected
FPs.

The process 24025 begins at an initial step 2601 in which a
2/3 region is input.

At a following step 2602, the two already detected FPs in
the 2/3 region are cropped from the acquired image using the
bounding box information of each FP. The two cropped
images may differ slightly in height and width, and so scaling
is then employed in step 2602 to scale both images to the
average height and width of the two detected FPs. Again, an
affine transformation may be used to accomplish this goal.

At a following step 2603, each pixel from the two scaled
representations of the FPs is averaged by summing the two
pixel intensities and dividing that sum by two. The result is a
template that is an averaged representation of the detected
FPs encompassing any noise and distortion effects introduced
by printing and scanning operations.

The process 24025 of forming a template 2402 terminates
at a final step 2604.

Search Regions

The process 2403 of forming candidate search regions
potentially containing a third finder pattern is now described
in detail with reference to FIGS. 29A to 30.

FIG. 29B shows an example of a normally oriented 2/3
region 2910 and FIG. 29A shows an example of a diagonally
oriented 2/3 region 2900. The process 2403 of generating
search regions differs depending on whether a normally or
diagonally oriented 2/3 code region is to be processed at step
2403. The appropriate processes for both types of 2/3 region
are described below.

In the normally oriented 2/3 region 2910 of FIG. 29B, two
rectangular search regions 2913 and 2914 are formed about or
adjacent to the detected finder patterns 2911 and 2912. This
may be achieved by forming two lines 2916 and 2917 per-
pendicular to a line 2915, the lines 2916 and 2917 running

US 9,355,293 B2

31

through the centres of the respective detected finder patterns
2911 and 2912. The lines 2916 and 2917 define the locations
of the search regions 2913 and 2914 through a process to be
described later with reference to FIG. 30. Note that the 2/3
region 2910 shown in FIG. 29B is only one of two possible 2/3
regions that will have been formed from the two detected
finder patterns 2911 and 2912 in the step 404. Another 2/3
region will also have been formed to the left of finder patterns
2911 and 2912, however search regions for this 2/3 region can
be formed in the same way as for the region 2910 shown in
FIG. 29B.

In the diagonally oriented 2/3 region 2900 of FIG. 29A, the
two rectangular search regions 2903 and 2904 are formed
about or adjacent to the detected finder patterns 2901 and
2902. Here, two lines 2905 and 2907 are formed at 45° to a
line 2906 that passes through the centres of the two detected
finder patterns 2901 and 2902. Both of these lines 2905 and
2907 must pass through the centre of one of the two detected
finder patterns 2901, 2902. The selection of the central FP is
arbitrary. These lines 2905 and 2907 define the locations of
the search regions 2903 and 2904 through the process to be
described next with reference to FIG. 30.

FIG. 30 shows a detected finder pattern 3001 and an adja-
cent search region 3017 located on aline 3002. FIG. 30 shows
how a search region is formed based on a finder pattern in a
2/3 region and a known line passing through the centres of the
finder pattern and the search region. Referring back to the
normally oriented code region 2910 of FIG. 29, note that the
arrangement shown in FIG. 30 could correspond to the finder
pattern 2911 and adjacent search region 2913 (on line 2916),
or alternatively, to the finder pattern 2912 and adjacent search
region 2914 (on line 2917). Referring to the diagonally ori-
ented code region 2900 of FIG. 29A, further note that the
arrangement of FIG. 30 could correspond to the central finder
pattern 2901 and either of the adjacent search regions 2903 or
2904 (on lines 2905 and 2907 respectively).

The centre 3013 of the search region 3017 corresponds to
an expected location of a missing finder pattern. The distance
3015 between the finder pattern 3001 and the centre 3013 of
the search region 3017 is the nominal distance (to be referred
to as D, ,) between adjacent finder patterns in the code
region being processed. In a normally oriented code region,
such as the code region 2910, the nominal distance D, is the
distance between the centres of finder patterns 2911 and 2912
along line 2915. This can be represented by Pseudocode 24:

ek pseudocode 24 *xx*

D,0m, normar = distance(first detected FP to second detected FP)

In a diagonally oriented code region such as the code
region 2900, the nominal distance D, ,, is the distance
between the centres of finder patterns 2901 and 2902 along
the line 2906, divided by 1.41. This can be represented by

Pseudocode 25:

ek pseudocode 25 *xx*

Dnom, diagonal =
distance(first detected FP to second detected FP)
/

1.41

Note that the constant 1.41 as used above approximates the
square root of 2.

10

15

20

25

30

35

40

45

50

55

60

65

32

The boundaries of the rectangular search region 3017 are
defined such that the region is as small as possible, whilst still
including all of the control points 3007, 3008, 3009, 3010,
3011 and 3012. Note that the rectangular search region is
always oriented with sides parallel to the axes (e.g. 3020 and
3021) of the coordinate system in use, regardless of the angle
of the line 3002. This is because such rectangular and nor-
mally oriented search regions allow for a simple implemen-
tation of the later template matching process.

The locations of the points defining the boundaries of the
rectangular search region 3017 are based on the application of
both a magnitude tolerance tolerance,, ;... and angle tol-
erance tolerance,,,, ;, to the expected location of the undetec-
ted finder pattern 3013. The point 3009 is found as the end-
point of the vector 3004 from the finder pattern 3001 along the
line 3002 of length D,,,. 3016. The length D,, . can be cal-
culated as follows:

ekt Pseudocode 26 *H**

Dpax = (1 + tolerance,,gizge) X Do

The point 3012 is found as the point along the vector 3004
at a distance D,,,,, 3014 from the finder pattern 3001. The
distance D,,,, can be calculated as follows:

ekt Pseudocode 27 *Hx*

D,,.. = (1 - tolerance)x D,

‘magnitude.

A vector 3003 is found by rotating the vector 3004 away
from the line 3002 by tolerance,,,.; xpi/2 3006. The points
3007 and 3008 are found atdistances D,,,,and D, along this
vector, respectively. The points 3010 and 3011 are found
similarly along vector 3005, rotated tolerance,,,,,,.xpi/2 3006
in the other direction from line 3002.

In this implementation, rectangular search regions with
sides parallel to the axes of the coordinate system are used,
however one skilled in the art will recognise that any search
region formed using methods similar to those described
herein may alternatively be used. The arrangements
described herein teach that search regions should be formed
based on the expected locations of missing finder patterns and
some applied tolerances, resulting in search regions of sizes
on the order of the size of the potential code region (i.e. much
smaller than the whole page). In the presently described
implementation, a magnitude and angle tolerance is used, and
a rectangular search region is fitted to the area defined by
those tolerances. Conceivably, an alternative means of apply-
ing a tolerance to the expected location of missing finder
patterns may be employed to define search regions of any
shape without departing from the present teachings.
Applying the Template

At step 2404, the template formed at step 2402 is applied in
atemplate correlation process in the search regions identified
at step 2403.

Two-dimensional (2D) correlation is a well-known method
for detecting and locating a sought-after feature in an image.
2D correlation involves passing a template over the content
contained in a search region to yield a 2D correlation map.
Each point in the correlation map indicates the similarity of
the template and overlapping search area at that point. Thus,
a sharp peak in the correlation map indicates that a feature
resembling the template is present in the content of the search
region at the coordinates of the peak.

angle

US 9,355,293 B2

33

In step 2404, 2D correlation with the FP template formed at
step 2402 is applied on each search region specified by step
2403 to determine if a third FP is present. In determining
whether a third FP is present, a predetermined peak strength
threshold is applied. If the highest peak of the correlation
maps of either of the search regions is higher than the pre-
determined threshold, an FP is determined to exist in that
search region at the location of the peak. If an FP is found in
both search regions, the third FP of the 2/3 region is deter-
mined to be the FP with the higher peak in the corresponding
correlation map. If a third FP is successfully found, process-
ing continues at step 2405 to output a complete QR region. If
a correlation peak of strength greater than the pre-determined
correlation peak threshold could not be found in either of the
search regions specified by step 2403, the template matching
process 2404 is deemed a failure and processing continues at
step 2406 where the process 2304 concludes.

An alternative method of template correlation, as applied at
step 2404, involves a one-dimensional correlation (instead of
the 2-D correlation method described). A one-dimensional
correlation involves taking a ‘slice’ through the described 2-D
pattern matching template formed at step 2402. A “slice’ is a
cross-section through the centre point of the template, ori-
ented at the same angle of rotation, angle,,,,,., as the tem-
plate. Subsequently, a line-by-line search is performed
through the search regions. If the search yields a line of pixels
resembling the template ‘slice’, then the third FP is deemed to
have been successfully found. Additionally, the search may
be performed at a direction perpendicular to the angle of
rotation, angle,, ., ...

Alternative Implementations

An alternative implementation to QR code detection and
decoding exploits the inherent features of a QR code to aid in
the process of detecting a missing FP in a 2/3 region.

In this alternative implementation, the process 2304 of
detecting a missing FP is altered to the process 23044 seen in
FIG. 32 and which comprises an additional region confirma-
tion step 3201, with other steps being the same as described
and numbered above.

In a first example of the region confirmation step 3201, a
clocking pattern is sought. As seen in FIG. 31, QR codes
comprise clocking patterns 3102 that run between FPs. These
clocking patterns 3102 consist of alternating black and white
modules that run in a straight line from the top-left FP to the
bottom-left and top-right FPs. Consequently, a simple check
may be implemented to detect a linear progression of alter-
nating black and white modules leading away from each of
the two already detected FPs. If alternating black and white
modules resembling a clocking pattern are detected, then the
region confirmation step 3201 is successtul and step 2402
described above follows. Otherwise, the region confirmation
step 3201 fails and step 2406 follows.

A second example of the region confirmation step 3201
inspects the frequency characteristics of the code region. The
QR code module size may be calculated from the two already
detected FPs. Therefore, frequency analysis techniques (such
as a 2-D Fourier Transform) may be used to determine if the
frequency of black and white modules in the code region
matches that of the detected FPs. Specifically, it is expected
that the energy in the code region is concentrated at a fre-
quency that maps to the QR code module size. If this is the
case, then the region confirmation step 3201 is successful and
step 2402 follows. Otherwise, the region confirmation step
3201 fails and step 2406 follows.

A further alternative implementation to QR code detection
and decoding exploits version information 3104 in a QR
code, as seen in FIG. 31, to aid in the check of step 1307 (FIG.

10

15

20

25

30

35

40

45

50

55

60

65

34

13), which checks if the FPs conform to QR code versions
1-40. QR codes larger than version 6 encode the code’s ver-
sion in close proximity to the QR code finder patterns. The
version information is error-corrected and may be decoded
using known methods. Given a QR code module size (calcu-
lated from detected FPs), the QR code version may be used to
determine the physical size of the QR code in pixels. Thus, at
step 1307, a check may be made to determine if the distance
between detected FPs is consistent with the physical size of
the QR code (as determined by decoding version informa-
tion).
Conclusion

CCA of itself is an imperfect tool for finder pattern detec-
tion. Whilst CCA is fast and inexpensive, it is unable to detect
finder patterns that have been topologically damaged, for
example where the inner component 103 is found to be con-
nected to the outer component 101, or there is a cut or break
in the outer component. However by combining CCA with
template matching and limiting the combination to regions
where finder patterns are expected, the present inventors have
found that the advantages of CCA (robust to size, rotation and
dot gain) combine with those of template matching (robust to
topological damage) whilst avoiding their corresponding dis-
advantages. With this approach, missing finder patterns can
be reliably located permitting efficient QR code decoding
where previously decoding was computationally expensive
or prone to errors.
Target Feature Detection System

Arrangements are disclosed to detect the presence, and
determine the location of a target feature in an image that may
contain other content such as text or drawings.
Description of a Valid Target Feature

A valid target feature will now be described with reference
to FIG. 1 which shows what may be considered a target
feature 100 having regions of two differing intensity levels.
For simplicity, regions of a lower intensity will be referred to
as being black, whereas regions of a higher intensity will be
referred to as being white. The target feature 100 is composed
of'a continuous black region 103 entirely enclosed by a con-
tinuous white region 102, which in turn is entirely enclosed
within a continuous black region 101. However, this disclo-
sure is not limited to the arrangement shown. It should be
understood that the innermost region 103 may be white,
though the subsequent outer region 102 must then be black,
and so on. Thus, as long as such an alternation of black and
white (ie. darker and lighter) regions is preserved, an arrange-
ment is a valid target feature. Furthermore, a valid target is not
limited to three alternating black and white regions as shown
in the target feature 100, but may consist of more than three
distinct regions. For example, the feature 3400 of FIG. 34 is a
valid target feature, and includes six distinct black and white
regions (3401, 3402, 3403, 3404, 3405, 3406).
Description of Target Feature Detection

The target feature 100 of FIG. 1 may be embedded in a
document with other content, such as text or drawings. Also,
the document may contain multiple target features of interest.
This document may then be printed and scanned to form a
digital image 3500, seen in FIG. 35. The digital image 3500
may be acquired by methods other than scanning, such as
from a digital camera. The printing and scanning processes
may introduce noise and distortions such that the digital
image 3500 is an imperfect representation of the original
document. Therefore, the representation of the target feature
3501 in the digital image 3500 may be noisy and distorted.
The presently described arrangement detects and locates tar-
get features in the digital image 3500 even if the target feature
3501 is affected by noise and distortion.

US 9,355,293 B2

35

A process 3600 for detecting and locating a target feature
3501 in the digital image 3500 is now described with refer-
ence to FIG. 36. The process 3600 for detecting and locating
a target feature is preferably implemented by executing a
software application upon the computer system 3300 begins
at a step 401 where the digital image 3500 is input, for
example by being retrieved from the HDD 3310 by the pro-
cessor 3305.

In a next step 3602 in the process 3600, the processor 3305
creates a binarized image 3700 seen in FIG. 37 from the
digital image 3500 by executing a binarization process.

In a following step 3603, the processor 3305 takes the
binarized image created in step 3602 and performs connected
components analysis on the binarized image 3700. The con-
nected components analysis process 3603 operates to identify
features in the binarized image 3700 that contain black and
white regions thus permitting delineation of the two, this
being a requirement for valid target features. The features in
the binarized image 3700 identified by the connected com-
ponents analysis process 3603 are referred to as candidate
target features. Also, during the connected components pro-
cess 3603, low-level metrics corresponding to geometric
properties of the candidate target feature are calculated by the
processor 3305. These low-level metrics and aggregation of
the metrics will be described in detail later.

In a following step 3604, each low-level metric of the
candidate target feature is used to determine size information,
positional information and a similarity score associated with
the candidate target feature. The similarity score determines
how closely a candidate target feature resembles the sought-
after target feature 100. Thus, if a candidate target feature is
actually a target feature 100 that has been slightly corrupted
by noise and distortions, the similarity score of that candidate
target feature will be high. On the other hand, if a candidate
target feature differs geometrically from the target feature
100 then the candidate target feature will have a low similarity
score. Size information, positional information and similarity
score will be described in detail later.

In a following step 3605, a post-processing step is applied
to the size information, positional information and similarity
score of the candidate target features to achieve various goals
depending on the particular implementation being per-
formed. This post-processing step may be different for each
implementation and will be described in detail later.

The process 3600 for detecting and locating target features
is terminated in a following and final step 3606.

Description of Thresholding

There are various ways of carrying out the binarization step
3602 of the image. In an exemplary implementation, the step
3602 in which a binarized image 3700 is created from a digital
image 300 is performed using an adaptive method and will
now be described in detail with reference to FIG. 38. The
binarization step 3602 described divides the image into a
tessellation of tiles of pixels, and calculates an appropriate
threshold for each pixel from a neighborhood of tiles. For
each tile, the minimum intensity value, min_,,, and maximum
intensity value, max,,,,, is stored. As an example, the digital
image 3500 is divided into tiles that are 32 pixels wide and 32
pixels high. FIG. 39 shows how a digital image 3500 may be
divided into tiles 3901. The binarization step 3602 described
herein is a robust and efficient algorithm that may be imple-
mented in software by the processor 3305 or using hardware
logic formed as part of the computer 3301, such as an ASIC,
and operating under control of the processor 3305. Again, it
should be understood that any binarization method that pro-
duces a two-level image from an input image may be used in
this step.

10

15

20

25

30

35

40

45

50

55

60

65

36

The binarization step 3602 of FIG. 38 begins at a first step
3801 in which a digital image 3500 is input. The digital image
3500 is processed one pixel at a time, beginning from the
top-left pixel. The digital image 3500 is processed in a raster
fashion, such that the order of pixel processing begins from
the leftmost pixel in a row and proceeds to the rightmost pixel
in the same row. Subsequently, processing resumes on the
next row and repeats in the same left to right processing flow
until the bottommost row is processed. Also in this initial step
3801, a tile buffer is established, for example in the memory
3306. The tile buffer serves as a temporary record of the
minimum intensity value, min,;,, and the maximum intensity
value, max,;,,, in a tile. Referring to F1G. 40, a tile buffer 4000
is shown in which a tile memory 4001 that stores minimum
and maximum intensity values for a tile 3901. The tile buffer
4000 can be regarded as a two-dimensional array where each
element may be uniquely identified by an x-index, x,;,,, and a
y-index, y,,,.

In a following step 3802, the next pixel in the processing
order is acquired. The maximum and minimum intensity val-
ues in a tile are updated according to the intensity of the
acquired (or subject) pixel. A tile to update is obtained from
the x-coordinate, x,,...;, and y-coordinate, y ., of the subject
pixel. An aspect of the binarization method 3800 is the capa-
bility to collect tile information several scanlines in advance
of the pixel being binarized. The number of scanlines in
advance of the pixel to be binarized in which tile information
is collected is specified by a parameter height,,, ... A tile
x-index, X,,;,, and tile y-index, y,,,., of the tile 3901 to update
may be calculated as follows:

X z.~foor| ('xpixel/ width,;;.)

Yeire 00 ((Vpixer=heighty,,arg) heightiz,)

Thetile to update is uniquely identified by x,,, and y ., and
the corresponding tile memory 4001 in the tile buffer 4000 is
accessed.

The maximum intensity value and minimum intensity
value inthe accessed tile memory is updated with reference to
the intensity value of the subject pixel. If the intensity value is
less than the minimum intensity value, the minimum pixel
intensity value of the accessed tile memory is replaced with
the intensity value of the subject pixel. Alternatively, if the
intensity value of the subject pixel is greater than the maxi-
mum intensity value, the maximum pixel intensity value of
the accessed tile memory is replaced with the intensity value
of the subject pixel.

In this way, the maximum and minimum intensity values of
tiles of the digital image 3500 are updated some scanlines in
advance of the pixel currently being binarized. The binarized
image 3700 once determined, may be stored in the memory
3306 or 3310.

In a following step 3803, a threshold is calculated by the
processor 3305 from a neighborhood of tiles surrounding the
subject pixel. In essence, a sliding window of'tiles is formed
around each subject pixel to be binarized. As an example, the
sliding window has a width, width,,,, .., =5, and a height,
height,, ... ;,,.=2. FIG. 41 shows a sliding window 4100 over-
layed on a digital image 3500 comprising tiles, including a
tile 4101. A corresponding window for a subject pixel may be
calculated from the coordinates, X,.,,.; and y,,.; of the subject
pixel.

The y-index, y,,,,., of the tiles corresponding to the topmost
extent of the sliding window 4100 may be computed by the
processor 3305 as follows:

Veire=H001(p,, 1 height ;) -height,, 70,

US 9,355,293 B2

37

The y-index, y,,,.., of the tiles corresponding to the bottom-
most extent of the sliding window 4100 may be computed as
follows:

Veize=H001 (V. /height 7).

The x-index, x,, ., of the tiles corresponding to the left-
most extent of the sliding window may be computed as fol-

lows:
X7 =000 (X5 . Width,z,)-floor((width,, ;. 7,,~1)/2).

The x-index, X,,,;.., of the tiles corresponding to the right-
most extent of the sliding window 4100 may be computed by
the processor 3305 as follows:

X7 =H000(X, 55 . Width gz Hfloor((width,, ;. 7,,~1)/2).

Once the corresponding sliding window 4100 for the sub-
ject pixel is obtained, a threshold value for the subject pixel
may be calculated from the minimum and maximum intensity
values, min,;, and max,,,, of each tile 4101 within the sliding
window 4100.

An exemplary threshold is a weighted average of threshold
values for each tile. For each tile, a weighted tile threshold,
thr,,,, is calculated by the processor 3305 evaluating the
following equation:

tile’

thr; =((max ;7 +min,;z,)/ 2)x (MaX;7,~Mill ;7).
Also, for each tile 4101, the tile weight, weight ,,, is cal-
culated from the following equation:
weight,;;.=max,;;,—min,;,.

Consequently, the appropriate threshold for the subject
pixel, thrg,;, is found from the following equation:

Z thrite

tiles

X weighty,”

tiles

thY finat =

There may be cases in which all pixels in the sliding win-
dow 4100 are of similar intensity, and are either all dark pixels
or light pixels. In this case, the calculated threshold value,
thrg, ., will be unreasonably low or unreasonably high.
Therefore, the resulting region in the binarized image 3700
would contain black and white pixels resembling noise,
instead of a homogenous black or white region. To minimize
the occurrence of these cases, the calculated threshold, thr-
nat, is allowed to float within a predetermined range (e.g. 50 to
210) but if the threshold exceeds this range, then the closest
in-range value is used instead.

In a following step 3804, the threshold calculated at step
3803 is used to produce a binary white or black pixel in the
binarized image 3700. If the intensity of the subject pixel is
less than the threshold thry,,,, calculated at step 3803, then the
corresponding pixel in the binarized image 3700 is set to
black. Otherwise, the corresponding pixel in the binarized
image 3700 is set to white.

If there are more pixels to process, determined by the
processor 3305 at step 3806, then steps 3802, 3803 and 3804
are repeated on the next pixel in the processing order. Other-
wise, the binarization step 3602 is terminated at step 3805.

It should be noted that the described binarization step 3602
may be implemented using an array of discrete hardware
logic elements, such as on an FPGA or ASIC. In such an
implementation, it may be desirable to reduce memory usage.
To achieve this, the tile buffer 4000 may be replaced with a
more memory efficient implementation. Referring to FI1G. 42,
a memory efficient tile buffer 1000 comprises only

10

15

20

25

30

35

40

45

50

55

60

65

38

height, .., ;. +1 rows of tile memory elements (assuming
height,,,,,, is less than height,;). When a tile is no longer
referenced for threshold calculations, the corresponding tile
memory of theftile is replaced with memory elements that will
be required for threshold calculations.

Description of Connected Components Analysis (CCA)

Step 3603 performs connected components analysis
(CCA) on a binarized image created at step 3602. The method
of CCA described herein is an efficient algorithm configured
specifically to detect predetermined target features. The CCA
method described outputs groups of black connected compo-
nents (CCs) found in the binarized image 3700. Where a
target feature such as the feature 100 is detected, CCA will
output pairs of CCs in which one CC is completely enclosed
within and separated from the other. Where the target feature
3400 is used, CCA will output triplets of CCs in which one
CC is completely enclosed within and separated from a sec-
ond, which is in turn completely enclosed within and sepa-
rated from a third CC. Additionally, the CCA method
described herein collects low-level metrics associated with
each CC. For simplicity, a method of detecting the target
feature 100 will be described, however such may be readily
extended to detect all valid target features as previously
described.

The method of CCA performed at step 3603 will now be
described with reference to FIG. 43. The method 3603 begins
at an initial step 4301 in which the binarized image 3700 is
input. The CCA method 3603 processes the binarized image
3700 in a raster fashion similar to the previously described
binarization method. This means that the CCA process begins
at the leftmost pixel of the topmost scanline of the image
3700, and continues until all pixels in the image have been
processed. The CCA method builds CCs line-by-line by find-
ing runs of black pixels on a scanline, and adding these runs
to CCs formed from runs on previous rows. It should be noted
that at any particular scanline, a CC comprises one or more
unconnected runs of pixels which will be referred to as the
“claims” of the CC on the scanline. The relationship between
a CC, its claims, and runs not yet assigned to a CC is illus-
trated in FIG. 44. In FIG. 44, a CC 4400 comprising two
claims 4401 and 4402 at a scanline 4403 is shown. Here, a run
4405 is found on a scanline 4404 which is connected to the
claim 4401 and hence the CC 4400.

Atafollowing step 4302, the next succession (referred to as
a run) of black pixels on the current scanline is sought by the
processor 3305. When such a run is found, a current pixel
pointer is moved to the start of the new run. A run is defined
to start at an x-coordinate, X, ., ,...» When the previous pixel
(81 X rars run—1) is White and the pixel at X, ., is black. The
run is defined to end at an x-coordinate, X_,, ; ,,.., When the
previous pixel (at X,,,; ,.,—1) is black and the pixel atX,,.; ...
is white. If step 4302 failed to find a subsequent run on the
current scanline, the current pixel pointer is set to the last
pixel on the scanline.

At a following step 4303, claims from previous scanlines
with extents behind the current pixel pointer are terminated.
This is because such claims do not continue on the current
scanline, as no overlapping runs were found. If a claim to be
terminated is also the last non-terminated claim of a CC, then
that CC is also terminated. When a CC is to be terminated, a
check is performed to determine if the CC to be terminated is
achild CC. A CCis determined to be a child CC if there exists
aparent CC that is, a CC that has claims on the scanline to the
left and right of the CC to be terminated. If this condition is
met, the CC to be terminated is marked as a child CC and is
referenced by its corresponding parent CC.

US 9,355,293 B2

39

Otherwise, the CC to be terminated may be a parent CC.
Here, a check is performed to determine if the CC to be
terminated references a child CC. Ifthis is so, the CC is output
to a following evaluation step 3604.

Lastly, ifthe CC is not enclosed by a parent CC, and the CC
is not a parent CC, then the CC will not be output for further
processing. In this case, any memory associated with the CC
is cleared, such as in the memory 3306, and any references to
the CC are discarded.

When a run (i.e. a succession of black pixels on a scanline
surrounded by white pixels) is found in step 4302, the run is
processed by the processor 3305 at step 4304. A detailed
description of run processing will be provided later.

If there are more pixels on the scanline being currently
processed, then the processing flow from step 4302 is
repeated. Otherwise, the next scanline (if one exists) in the
binarized image 3700 is selected (at step 4305) and pro-
cessed.

If there are no scanlines remaining to be processed, the
method of CCA which may be employed at step 3803 is
terminated at a final step 4306.

The method of processing runs, employed at step 4304,
will now be described in detail with reference to FIG. 45. The
method begins at an initial step 4501 in which a run to be
processed is input.

If the run is not connected to an existing claim, then a new
CC and claim are initialized at step 4502.

To initialize a newly created claim, the lefimost extent of
the claim on the current scanline, y.,...7:,,0, 18 s€tt0 X, .. 100
Similarly, the rightmost extent of the claims on the current
scanline is set t0 X,,,; ,un-

To initialize anew CC, the topmost extent of the CC, Yee rop
is set to the y-coordinate of the current scanline, Y.,,,zi.- Lhe
leftmost extent of the CC, X ;,4. 15 set to X, ,,,» and the
rightmost extent of the CC, X... ,,0,, 18 et to X, ,,,,- All
other low-level CC metrics are initialized to zero before being
updated by the methods described later in relation to step
4503.

If a run is connected to a single existing claim on the
preceding scanline, then the existing claim is modified to
cover the extent of the new run and the CC of the claim is
updated at step 4503.

However, if the run is connected to multiple existing
claims, and those claims reference different CCs, then all the
CCs are merged to form a single CC at a merging step 4504.
Furthermore, the claims are merged to cover the extent of the
new run. The process of merging several CCs will be
described in detail later.

A CChas several associated low-level metrics that are used
to calculate higher-level metrics in step 3604. However, the
low-level metrics accumulated at step 4503 can be updated
and thus are amenable to implementation in hardware. The
low-level metrics include, but are not limited to:

CC leftmost extent, X,... ;.

CC rightmost extent, X, .5,

CC topmost extent, y,.. ,,,

CC bottommost extent, V... ,ozom

CC mass, mass,. -

CC hole mass, mass_... ;..

CC gradient sine-component, sin,..

CC gradient cosine-component, cos,,.

CC gradient accumulated weights, weight__

The process of updating the first four of the above metrics
for a CC is best represented by the following pseudocode,
which, when represented by application code, may be
executed by the processor 3305:

—

0

20

25

35

40

45

50

55

60

65

ekt Pseudocode 28 *Hx*
lestartJun < chJeft:
Kee_left = Rstart_run
X g rim > Xoe_right'

X,

cc_right = Rend_run

Yee_bottom = Yscanline
mass,, =MasS.. + Rend run = Kstart_run + 1)

The CC’s hole mass is an approximation of the number of
white pixels enclosed by the CC. If the CC has a claim (say,
claim,,, with rightmost extent X ;,,,,, 05 ona O0 the current
scanline) to the left of the claim being currently updated (say,
claim,,,,.,, with leftmost extentx, ,,, ,,,, on the current scan-
line), then the CC’s hole mass is simply updated with the
following pseudocode:

ekt Pseudocode 29 *Hx*

MASSce pofe = MASSee pote + Kszare_run = Xetaim_tefi_end = 1)

The CC’s gradient at a given pixel location is acquired or
otherwise determined using well-known methods such as
with a Sobel filter, for example implemented in software
executed by the processor 3305. A Sobel filter inspects the
pixel intensities within a one-pixel neighborhood of the sub-
ject pixel to approximate the gradient at the pixel location.
Using the Sobel filter, the horizontal gradient gradient,, .,
vertical gradient gradient,,,, and gradient vector magnitude
gradient,,,.,;.4c may all be computed with equations well
known in the art.

The gradient vector at a given pixel location is transformed
into an equivalent angle that is in the ‘first quadrant’, that is,
modulo 7t/2. This allows the angle of rotation for a shape with
rectilinear sides to be calculated in later steps.

Additionally, the sine and cosine components of the gradi-
ent vector are weighted by the magnitude of the gradient
vector at a given pixel location.

Pseudocode representative of software for updatinga CC’s
gradient sine, cosine and weight component is as follows:

ekt Pseudocode 30 *Hx*

theta_first quadrant =

(4 x arctan(gradient,,, / gradient;,,,,))mod(2 x pi)
sin,, = sin,, + (sin(theta_first_quadrant) x gradient,,
COS,,. = €08, + (cos(theta_first_quadrant) x gradient,,, ;...
weight,, = weight, + gradient,,

agnitude)

agnitude

At step 4504, CCs and claims are merged if a run overlaps
more than one claim. In essence, low-level CC metrics are
aggregated from all CCs and overlapping claims are replaced
with a single claim matching the extents of the found run.

The leftmost extent of the merged CC will be the lefimost
coordinate of all CCs to be merged. Similarly, the top, right
and bottommost extents of the merged CC can be determined
by finding the topmost, rightmost and bottommost extent of
all CCs to be merged.

The merged CC mass, mass,,,. g . can be found from
summing the mass of all CCs to be merged. Similarly, all
other low-level metrics, such as mass,, ;. .., may be summed
from all CCs to be merged to determine the respective metric
for the merged CC.

Once CCs are updated, merged, or a new CC is initialized,
the method of processing runs, employed at step 4304 is
terminated at a final step 4505.

US 9,355,293 B2

41

Description of Shape Metric Evaluation

The output of step 3603 of FIG. 36 is a list of candidate
features that may potentially be the target feature 100. Each
candidate feature output by step 3603 has corresponding low-
level metrics that are collected and updated as described
previously. At step 3604, the low-level metrics are used to
calculate higher-level shape metrics. Shape metrics are
closely related to the geometry of the candidate features.

The method for evaluating shape metrics for each candi-
date feature, employed at step 3604, will be described in
detail with reference to FIG. 46. At an initial step 4601, a
candidate feature with corresponding low-level metrics is
input. This may involve retrieving such data from a storage
location in the memory 3306 or HDD 3310 to the processor
3305. At a following step 4602, intermediate metrics are
calculated by the processor 3305 for each candidate feature.
Intermediate metrics facilitate calculation of shape metrics.
At following step 4603, a set of shape metrics are calculated
from the low-level metrics and intermediate metrics of each
candidate feature. Each shape metric will be described in
detail later. At a following step 4604, each shape metric is
normalized to generate normalized shape metrics. At a fol-
lowing step 4605, each normalized shape metric is multiplied
with a pre-determined weight to generate a weighted shape
metric. The method of evaluating shape metrics is then ter-
minated at a final step 4606.

The steps 4602 and 4603 will now be described in detail.
However, the details of steps 4604 and 4605 vary between
various implementations, and therefore will be described
later.

Each intermediate metric, calculated at step 4602, will now
be described in detail with reference to FIG. 47. A candidate
feature 4700 is composed of a child CC 4701 and a parent CC
4702. Metrics corresponding to the child CC 4701 will be
subscripted with ‘child’, and metrics corresponding to the
parent CC 4702 will be subscripted with ‘parent’. Metrics
include x and y location, module size, width, height, average
side length, and angle of rotation, for example.

The x and y location of the individual CCs may be deter-
mined by the processor 3305 evaluating the following equa-
tions:

Xenita™X chitd_ce_tefit Kehitd_co_right chitd_ce_ief™1)/2
Venita™Y chitd_ce_top™Venitd_ce_bottom™Ych ild_cegpt 1)/2

P

\parent *

X parent_co_lefit Kparent_ce_right pavens_ce_lefi™

yparent:yparenticcitop-"(yparenticcibottom_yparenticcitop+
1)/2
The x and y location of the candidate feature,

Xcandidateﬁature and YCandidateﬁatures may be determined by
the processor 3305 evaluating the following equations:

)2

X candidate._feanre=Fehild_centreXparent_centre

Veandidate_feature=Ychild_centretV parent_centre) 2

The module size of a target feature (in pixels) is equivalent
to the stroke thickness of the outer black region 101, which
should be equivalent to the width of the enclosed white region
102. Therefore, it is desirable to determine the module size of
detected candidate features for post-processing purposes.
However, in some distorted images, the module sizes of black
and white regions are not equivalent, so an average module

10

15

20

30

35

40

45

50

55

60

65

42
size is computed by the processor 3305 from black and white
regions.

module_size black=sqrt(mass,,,,.,./24)

modulefsizefwhite:sqlt((holefmasspa
16)

~MASS ;7))

rent

module_size=(module_size_black+module_size_
white)/2
Note that ‘sqrt” indicates the square root function.
A width 4703 of the child CC, width,,,,,,, is determined by
the following equation:

WIAth 3 X ita_corightFenita_ce_teft]

A height 4704 of the child CC, height ,,, , is determined by
the following equation:

height .25 chita_cc_pottomYehita_cc_opt1

An average side length of the child CC, average_side .,
is determined by the following equation:

average_side,,,=(width ,,, +height ., /2

A width 4705 of the parent CC, width,,,,..,,,, is determined

by the processor 3305 using the following equation:
width, =X,

‘parent parenticciright_xparenticcileft

A height 1506 of the parent CC, height,,,,.,,,,, is determined

by the processor 3305 executing the following equation:

+1

helghtparen t:yparenticcibottom =Y, parenticcitop-" 1

An average side length of the parent CC, average
side is determined by the following equation:

‘parent’

average_side,, ., ~(Width,, ., +height,,,...)/2

Also, an angle of rotation 1507 of the candidate feature
4700, angle...,, sisure_fanre> MAy be determined by the proces-
sor 3305 executing code exemplary of the following
pseudocode:

ekt Pseudocode 31 *H**

sin angle ngidare . feature = sin angle ;77 .. + sin aﬂgleparem,cc
oS ANgle, o gidate foatire = COS ANGLE 4y . + cOs angle,
Weight . gidate_feanmre = W izg oo+ WEIGht 0oy o0
averaged_sin angle . izace_feature =

arent_cc

sin angle pgidare _feature

/

Welghtcandidate _feature
averaged_cos anglecandidateﬁamre =

cos anglecandidateﬁamre

/

Welghtcandidate _feature
angle qdidare _feature =

arctan
(.
averaged_sin angle pgidae_feature
/
averaged_cos angle
)
/
4
.)
if angle .pgidare._feature < 0:]
angle . gidate feature = MEle candidate_feanre + P/ 2)

candidate_feature

Note that ‘arctan’ refers to the inverse tangent function, and
‘pi’ refers to the mathematical constant 7.

Each shape metric, calculated at step 4603, will now be
described in detail. However, it should be understood that
shape metrics are not limited to the metrics described herein,
being side ratio, width and height ratios, average side ratio,

US 9,355,293 B2

43

mass ratio, closed mass, solidity, concentricity, rectilinearity,
average rectilinearity, and bounding box solidity.

The side ratios of the child and parent CCs, side_ratio,;,;;;
and side_ratio,,,,,,, may be determined from the following
equations:

side_ratio,,,;~width ., ./height ; .,

side_1atio, e, Width e parens

The width and height ratios of the candidate feature, width
ratio and height_ratio, may be determined by the following
equations:

width_ratio=width,;;/width

lparent

height_ratio=height;,;;;/heigh

parent

The average side ratio of the candidate feature, side_ratio,
may be determined by the following equation:

side_ratio=average_side ;,,/average side,,,cn

The mass ratio of the candidate feature, mass ratio, may be
determined by the processor 3305 evaluating the following
equation:

Mass_ratio=Mmass 7/ MAaSS g rens

The closed mass of the child and parent CCs, closed_

mass,,;, and closed_mass,,,.,,,, may be determined by the
following equation:

closed_mass ,;;,;~Mass 4,;;+hole_mass ;.
closed_mass SIMASS,, e HN0le_mass

parent parent

The solidity of the child and parent CCs, solidity,,,, and
solidity,,,,.,,» may be determined by the following equation:

solidity ;77~Mmass ;/closed_mass

SOLAILY yreree~NASS, e/ ClOSED_MMIASS,

Sparent

The concentricity of the candidate feature may be deter-
mined by the processor 3305 executing code exemplary of the
following pseudocode:

ek pseudocode 32 *xx*

Xhitd_cenve = Rehitd_co_right Xehitd_ce_ief) | 2
Yehitd_centve = (Y chitd_co_potwom + Yenitd_ce_sap) | 2
Rparent_centre = Rpavent_ce_right + Xparent_ce_tef) | 2
ypar.enticentre = Vparent_cc_bottom T yparenticcitop) /2
X X

_d18tyenveen_centres = Xehild_centre = \parent_centre
y—d’IStbelweenicentres = Yechild_centre ~ Yparent_centre

o : : 2
Concentrl(:lty = Sqﬁ(x—dIStbetweenicentres + y—dIStbemeenicentres)

Note that ‘sqrt’ indicates the square root function and the
superscripted numeric ‘2’ indicates a power of 2.

The rectilinearity of the child and parent CCs, rectilineari-
tY niza and rectilinearity,, ,,..,,,, may be determined by the fol-
lowing equations:

rectilinearity,;,;=sqrt(sin® angle ;27 ot
4) _
cos” angleg g o)/ Weightera oo

rectilinearity ., =sqrt(sin® angle ;.27 vo
o . x
+cos” angle g /Weight gy o

The average rectilinearity of a candidate feature, rectilin-

€AritY, . siaate_foarwres MY be determined by the processor
3305 executing code representative of the following equation:

rectilinearity . gidare _feature”

a2
sqrt(sin a‘nglecandidate _featuret

5 .
c0s” angle ., giare_feature) W candidare_feanre

10

15

20

25

30

35

40

45

50

55

60

65

44

The child CC’s ‘bounding box’ solidity is a measure of how
closely the size of the child CC’s bounding box matches an
exemplar bounding box of a rotated child CC with known
mass. In practice, the mass of the child CC and the angle of
rotation of the candidate feature are used to calculate an
expected bounding box size. This expected size is compared
with the actual bounding box size to give the ‘bounding box’
solidity metric. A method for calculating the child CC’s
bounding box solidity, bounding_box_solidity ., is repre-
sented by the following pseudocode:

ekt Pseudocode 33 *Hx*

expected_BB_side_length = (width,;,;; + height ;;;.) / 2
sin_theta_plus_45 = sin(angle .., gidaze_featire + (P1/4))
expected_CC_side_length =

expected_BB_side_length

/

(sqrt(2.0) x sin_theta_plus_45)
expected_CC_mass = expectetLCCfsideflength2
bounding box_solidity,;,;,; = mass,,,;,; / expected_CC_mass

Those skilled in the art will recognise that a similar “bound-
ing box’ solidity metric can be calculated for the parent CC
using closed_mass,,, ..,
Target Feature Detection in the Context of QR Code Decod-
ing

In a first implementation of target feature detection, the
process 3600 of detecting target features is applied to detect
and decode a QR Code shown as 4800 in FIG. 48. The QR
Code 4800 is decoded by first acquiring the locations of each
of three ‘finder patterns’ 4801, 4802 and 4803.

The process 3600 of detecting target features (in this case,
detecting the finder patterns 4801, 4802 and 4803) for QR
Code decoding will now be described with elaboration of
steps 3604 and 3605.

The method of evaluating shape metrics, as applied at step
3604, to generate a single similarity score will now be
described in greater detail. The method comprises the sub-
step 4604, in which shape metrics are normalized. At step
4604, each shape metric is normalized by the processor 3305
to a value between 0 and 1. A normalized value of 1 indicates
that the candidate feature is geometrically similar to the target
feature for that metric. Thus, a normalized value of O indicates
that the candidate feature is geometrically dissimilar to the
target feature for that metric. Additionally, the normalization
step 4604 discards candidate features whose metrics fall out-
side a wide predetermined range.

Each shape metric has an ideal value that matches the

geometric attributes of the target feature precisely. For
example, the ideal side_ratio,,;;; value for the target feature
100 is 1 since the inner component of the target feature 101 is
a square. The following table outlines valid ranges for each
shape metric in accordance with this implementation:

Metric Minimum Ideal Maximum
mass__ratio 0 0.375 0.75
width__ratio 0 0.43 1.0

height_ ratio 0 0.43 1.0
concentricity 0 0 concentricity__max
side__ratio 1z 0.5 1.0 2.0
side__ratio,,,en, 0.5 1.0 2.0

solidity ,.1s 0 1.0 1.0
bounding_ box_ solidity ;s 0 1.0 2.0

Solidity parene 0 0.49 1.0

US 9,355,293 B2

45

Metrics not listed in the above table, such as rectilinearity,
are not normalized.

The maximum valid concentricity value is a factor of the
size of the target feature. Therefore, the maximal concentric-
ity value, concentricity_mazx, is determined by the following
pseudocode:

ek pseudocode 34 *xx*

max_dist_x = width,;;;/ 2
max_dist_y = height,,,;;/ 2
max_concentricity = sqrt(max_dist_x? + max_dist_y?)

A normalized shape metric is generated from each shape
metric according to the 1 following pseudocode:

ek pseudocode 35 *xx*

if metric < metric_ideal:
normalized_metric =
(metric — metric_mininum)
/
(metric_ideal — metric_minimum)
else:
normalized_metric =
1

(

(metric — metric_ideal)
/
(metric_maximum — metric_ideal)

At step 4605, the normalized shape metrics are arithmeti-
cally combined (through multiplication and addition) to gen-
erate a single similarity score. The following pseudocode
represents the process for combining shape metrics:

ek pseudocode 36 ****

rectilinearity parent_combined =
1OTM_SOLAILY,rerse X TECtilin€arity,, ;e
side_ratios_combined =
norm_side_ratio ;; X norm_side_ratio, ;...
weighted_metrics =
(mass_ratio_weight x norm_mass_ratio)
+
(width_ratio_weight x norm_width_ratio)
+
(height_ratio_weight x norm_height_ratio)
+
(concentricity_weight x norm_concentricity)
+
(
rectilinearity_parent_combined_weight
x
rectilinearity_parent_combined

—

side_ratios_combined_weight
x
side_ratios_combined

)

similarity_score =

weighted_metrics

x

solidity ;s

x

norm_bounding box_solidity 44

Note that normalized metrics are prefixed with ‘norm’ and
weights, in an exemplary implementation, are defined in the
following table:

10

15

20

25

30

35

40

45

50

55

60

46
Weight Value
mass__ratio_ weight 0.2978
width__ratio_ weight 0.2256
height_ ratio_ weight 0.1799
concentricity weight 0.0887
rectilinearity_ parent_ combined_ weight 0.0599
side__ratios_ combined_ weight 0.1481

The weights defined above were acquired through statisti-
cal analysis of a large data set. The data set comprises images
with actual target features known as a positive set, and images
with features similar to target features known as a negative
set. The above weights (when applied to generate a similarity
score) provide useful separation of similarity score means
between the positive and negative test set.

Once a similarity score has been generated for each candi-
date feature, these candidate features are output to a post-
processing step 4605. The post-processing step 4605 for this
implementation is shown in FIG. 49. The post-processing
step begins at an initial step 4901 in which a list of candidate
features are input.

At a following step 4902, the list of candidate features are
‘resolved’ to determine candidate regions. A candidate region
is atwo-dimensional region that may potentially containa QR
Code. A QR Code comprises three finder patterns arranged in
the top-left, top-right and bottom-left corners of the two-
dimensional code. A candidate region, therefore, has three
candidate features in a similar arrangement.

Thus, a series of checks are carried out to determine if a
group of three candidate features are suitably arranged to
form a candidate region. These checks are made with respect
to two predetermined tolerances: tolerance,,,.;, and toler-
ance As an example, tolerance,,,,, is 0.2 and toler-
aNCE,, e pinete 15 0-2. A detailed description of a method to
resolve candidate features into candidate regions will be pro-
vided later.

At a following step 4903, the list of candidate regions
generated at step 4902 are inspected to remove candidate
regions with additional candidate features. A detailed
description of this step will be provided later.

Once candidate features have been resolved into candidate
regions at step 4902, and regions with additional candidate
features have been removed, candidate regions are decoded at
step 4904. The process of decoding a QR Code and extracting
the coded data once a triplet of finder patterns (resolved
candidate features) is well known in the prior-art and there-
fore will not be described here. However, it is noted that the
final output of the decoding process will be the data encoded
two-dimensionally in the QR Code. Finally, the post-process-
ing step (in the context of this implementation) applied at
3805 is terminated at step 4905.

A method of resolving candidate features into candidate
regions performed at step 4902 will now be described with
reference to FIG. 50. The method begins at an initial step 5001
in which all detected candidate features are input.

At a following step 5002, a group of three candidate fea-
tures is acquired. Each candidate feature in the group is
assigned an assumed position in the candidate region. This
means that each group of three candidate features will be
selected three times at this step, each time with a different
arrangement of assumed positions. These candidate features
are hereon referred to as CF,,, CF,, and CF,,. These corre-
spond to candidate features in the top-left, top-right and bot-
tom-left corners respectively.

At a following step 5003, a check is made to determine if
the three candidate features have similar module sizes. The

‘magnitude*

US 9,355,293 B2

47
module size denotes (in pixels) the stroke width of the parent
CC in the target feature 100. The check for similar module
sizes may be represented by the following pseudocode:

ek pseudocode 37 *xx*

abs(module_size,; — module_size,,.)

/

min(module_size,, module_size,.)
) <=tolerance,
and

‘magnitude

abs(module_size,, — module_size,,)

/

min(module_size,, module_size,;)
) <=tolerance,
and

‘magnitude

abs(module_size,;— module_size,,.)
/
min(module_size,;,, module_size,.)
) <=tolerance,
):
check passed
else:
check failed

‘magnitude

At a following step 5004, a check is made to determine if
the distances between the candidate features are equal, con-
forming to a square QR Code. This check may be performed
by implementing the following pseudocode:

k% pseudocode 38 *xx*

vector_X,; . =X;— X,
Vector Yy 4 =Ya~Va
vector_mag,;_,. = sqrt(vector_X,_,> + vector_y,_,2)
vector_X,_ ;=X — Xz
VeCtor Yy p1=Yu= Yo
vector_mag,; ,; = sqrt(vector_x,_ 57 + vector_Y,_»7)
min_vector_mag = min(vector_mag,._;, vector_X,_z;)
max_vector_mag = max(vector_mag,; ,, vector_x,;_,)
if max_vector_mag <= (min_vector_mag x (1 + tolerance,,,gmisuae):
check passed
else:
check failed

At a following step 5005, a check is made to determine if
the vectors running from the top-left candidate feature to the
other two candidate features are adequately orthogonal. A
further check is made to determine if the assumed assign-
ments of candidate features to the top-right and bottom-left
positions in the candidate region are correct. These checks
may be performed by implementing the following
pseudocode:

ek pseudocode 39 *rx*

dot_product =
(vector_X,;_,. X vector_X,;_z;)
+
(Vector_y,;_,. x vector_y,; ;)
cross_product_k =
(vector_X,;_,. X vector_¥,;_z)
+
(Vector_y,;_,. x vector_X,;_;)
cos_theta = dot_product / (vector_mag,;_,. x vector_mag,; ;)
if cos_theta <= tolerance and cross_product_k > 0:
check passed

angle

10

15

20

25

30

35

40

45

55

60

65

48

-continued

k% pseudocode 39 *rx*

else:
check failed

At a following step 5006, a check is made to determine if
the angles of rotation of the candidate features are similar.

It is noted that the angle of rotation calculated for each
candidate feature is modulo /2 radians. Therefore, an adjust-
ment is carried out to determine the smallest deviation
between angles of rotation of candidate features. This check
may be performed by implementing the following
pseudocode:

ekt Pseudocode 40 *Hx*

abs(angle, — angle,) <= tolerance,,,,g;. x pi/ 2

or

pi/2 - max(angle,, angle,) + min(angle,;, angle,)

) <= tolerance,,, g x pi /2
)
and
abs(angle, - angle,;) <= tolerance,,,g;, x i/ 2
or
pi/ 2 - max(angle,, angle,;) + min(angle,;, angle,;)
) <= tolerance,,, g x pi /2
and
(
abs(angle,; - angle,.) <= tolerance,,,g;, x pi/ 2
or
pi/ 2 - max(angle,;, angle,,) + min(angle,;, angle,,)
) <= tolerance,,, g x pi /2
)
):
check passed
else:
check failed

At a following step 5006, a check is made to determine if
the angles of rotation of the candidate features are similar to
the rotation of the candidate region. The angle of rotation of
the candidate region is defined as the vector angle between the
top-left and top-right candidate features. This check may be
performed by implementing the following pseudocode:

ekt Pseudocode 41 *Hx*

vector_angle,;_,,. = arctan2(vector_y,;_,., vector_y,,_,.)
if vector_angle,; . <0:

vector_angle,;_,. = vector_angle,;_,. + (2 x pi)
vector_angle,;_,. = pi/2 — ((4 x vector_angle,;_,)mod(2 x pi)/4)

if
(
(
abs(angle,; - vector_angle,;_,.) <= tolerance,,,g;, x pi/ 2
or
pi/2
- max(angle,, vector_angle,_,,)
+ min(angle,;, vector_angle,;_,,.)
) <= tolerance,,,g7. % pi/ 2
)
and

US 9,355,293 B2

49

-continued

Rk pseudocode 41 **x*

(
abs(angle,,. — vector_angle,;_,,) <=tolerance
or

xpi/2

angle

pi/2

- max(angle,., vector_angle,; ,.)

+ min(angle,., vector_angle,;_,.)
) <= tolerance, xpi/2

angle

)

and

abs(angle,; — vector_angle,; ,.) <= tolerance
or

xpi/2

angle

pi/2
- max(angle;;, vector_angle,;_,,.)
+ min(angle,,, vector_angle,;)
) <= tolerance,,,g7. x pi /2
)
):
check passed
else:
check failed

Note that arctan2 denotes the four-quadrant inverse tangent
function.

If all the checks in steps 5003 to 5007 are passed, as tested
in step 5010, the candidate region is added to a list of candi-
date regions for output at a following step 5008.

If there are more candidate regions remaining to be pro-
cessed, as tested at step 5011, then the process from step 5002
is repeated. Otherwise, the method of resolving candidate
regions from candidate features is terminated at a final step
5009.

At step 4903, each candidate region in the list for output is
processed to check whether a candidate feature exists in the
two-dimensional area spanned by the region’s candidate fea-
tures. A valid QR Code contains finder patterns only in its
corners. Therefore, if additional candidate features are found
inside the candidate region, then the candidate region cannot
be avalid QR Code and should be removed. The process 4903
of eliminating candidate regions with internal candidate fea-
tures will now be described in detail with reference to FIG.
51. The process begins at an initial step 5101 in which a list of
candidate features and a list of candidate regions (created
during step 5008) are input.

At a following step 5102, a candidate region is selected.

At a following step 5103, a candidate feature is selected.
Here, every candidate feature may be selected from the list
input at step 5101. However, the overall system may be made
more robust if only candidate features with a high similarity
score (relative to the features forming the candidate region)
are selected. As an example, a candidate feature may have an
adequately high similarity score if its similarity score is
greater than two-thirds of the minimum similarity score of the
features in the candidate region.

At a following step 5104, a check is performed to deter-
mine if the selected candidate feature is located inside the
candidate region. This check is best described with reference
to FIG. 52. In FIG. 52, the candidate region is extrapolated to
aparallelogram 5200 (if vector_angle,, , and vector_angle,, ,.
are not orthogonal). If the centre of the selected candidate
feature 5201 (defined by X .idare_feature MY candidate_fearure)
lies within the parallelogram 5200, then the selected candi-
date region is determined to contain an internal candidate
feature. While a parallelogram defined directly by the centres
of the three candidate features of the region is shown in FIG.

10

15

20

25

30

35

40

45

50

55

60

65

50

52, it should be understood that a larger parallelogram, for
example formed by the addition of a buffer region to in the
region 2000, could be used.

Ifthe candidate region is determined to contain an internal
candidate feature, then the candidate region is removed (at
step 5105) from the list of candidate regions to be output to the
decoding process 4904.

If there are more candidate features in the list, then the
process from step 5103 is repeated.

Otherwise, if a candidate region in the list remains to be
processed, then the process from step 5102 is repeated.

Otherwise, if no candidate regions remain to be processed,
then the process of eliminating candidate regions with inter-
nal candidate features is terminated at a final step 5106.

Target Feature Detection in the Context of Copyright Symbol
Detection

In a second implementation of target feature detection, the
process 3600 of detecting target features is applied to detect a
copyright symbol © 5300 in FIG. 53. It should be apparent
that the copyright symbol 5300 is a valid target feature since
it comprises a black region 5301 (i.e. the character “c”) com-
pletely enclosed by a white region 5302, which is in turn
completely enclosed by a black region 5303 (i.e. a circle).

The process 3600 of detecting target features (in this case,
copyright symbols) will now be described with elaboration of
steps 3604 and 3605. Additionally, references will be made to
steps already described in the implementation above.

The method of evaluating shape metrics 3604 to generate a
single similarity score, in the context of this implementation,
will now be described in greater detail. Step 4604, in which
shape metrics are normalized to the range 0 to 1 is similar to
the description for step 4604 described for the above imple-
mentation. However, the ideal, minimum and maximum val-
ues for shape metrics differ because the geometry of the target
feature differs significantly from QR Code finder patterns.
Also, some shape metrics are not relevant for detecting copy-
right symbols and therefore need not be used in this imple-
mentation.

Ideal, minimum and maximum values for shape metrics are
given in the following table. Metrics not listed in the follow-
ing table are not relevant to this implementation and are not
calculated.

Metric Minimum Ideal Maximum
mass__ratio 0 0.4336 0.8672
width__ratio 0 0.5 1.0

height_ ratio 0 0.5 1.0
rectilinearity ;74 0 0.1 0.5
rectilinearity ., 0 0 0.5
concentricity 0 0 concentricity__max
side__ratio 1z 0.5 1.0 2.0
side__ratio,,,en, 0.5 1.0 2.0

50lidity, 4 0 0.3095 1.0

The following step 4605, in which normalized shape met-
rics are arithmetically combined, differs in the present imple-
mentation to that described above. In this implementation,
every normalized shape metric is first multiplied by a pre-
determined weight. Subsequently, all weighted and normal-
ized shape metrics are summed to generate a final similarity
score. The following table lists the weights for each normal-
ized metric:

US 9,355,293 B2

51 52
Weight Value Weight Value
mass__ratio_ weight 0.2893 mass__ratio_ weight 0.2396
width_ ratio_ weight 0.0797 width__ratio_ weight 0.1407
height_ ratio_ weight 0.0975 5 height_ ratio_ weight 0.1292
rectilinearity,;,;,, weight 0.0590 rectilinearity,,,.,, weight 0.1358
rectilinearity, .., weight 0.1014 concentricity_ weight 0.0199
concentricity_ weight 0.0191 side__ratio ;;;, weight 0.0948
side_ ratio ;,, weight 0.1028 side_ratio,,,,.,, weight 0.1167
side_ratio,,,,, weight 0.1014 SOLidity,pen, Weight 0.1234
S0Lidity e, Weight 0.2009 10
As noted above, the arrangements described are typically

The remainder of the shape metric evaluation process 3604 implemented in a suitably programmed computing system
in this implementation is identical to the process described in 3300 where an image is scanned from a document or other-
the previous implementation. s wise input (via an electronic file across the communications

Step 3605 of post-processing candidate features will now network 3320, 3322) and the imaged is processed by the
be described with reference to FIG. 54. The method 3605 for ~ computing system 3300 to detect the presence of the target
post-processing of candidate features begins at an initial step feature, such as the copyright symbol © or the registered trade
5401 in which a list of detected candidate features are input. m?{\l; symbhoil ﬁ T.hel lmetthOd; described ?re en(lib?)(lhei m

. . . software which typically stored in a computer readable stor-

Ata follow1gg step 5402, a candlde.lte.fea.ture is selected. 20 age medium (eg. HDD 3310) of the system and is read and

At a following step 5403, the similarity score of the executed by the processor 3305 of the system to operate upon
selected candldgte feature is compared W%th a predetermined the input image. A specific implementation may be to include
tl.lre.sho.ld. In thlS. example, the threshold is set to 0.48. If the the arrangements in a photocopying machine so as to prevent
51m11.ar1ty score is greater than the tMeshold value, then the inappropriate the replication of copyright works or those
candidate feature is output as a detection result. The process 2° containing registered trade marks. The system 3300 may be
from step 5402 is repeated if there are remaining candidate considered a photocopying machine, for example where the
features to be processed, as tested at step 5405. Once there are scanner 3327 and printer 3315 represent the electromechani-
no candidate features remaining to be processed, the method ¢al inputs and outputs of the copier and the computer 3301
3605 of post-processing candidate features is terminated at a 5 Tepresents the computerised controller of the copier. For
final step 5404. example once a candidate region of a target feature is identi-
Target Feature Detection in the Context of Registered Trade- fied, the target feature can be compared using the processor
mark Symbol Detection 3305 againsta stored array of possible target features from the

In a third implementation of target feature detection, the HDD 3310. A result of the comparison is then used to cause or
process 3600 of detecting target features is applied to detecta 35 Otherwise abort copying of the document through printing in
registered trademark symbol 5500 in FIG. 55. It will beappar- thephotocopier of the scanned image. For example, where the
ent that the registered trademark symbol 5500 is a valid target copyright symbol is detected, the photocopier can then abort
feature since it comprises a black region 5501 (i.e. the char- a copying operation instigated by a scanning of the document
acter “R”) completely enclosed by a white region 5502, ‘py Fhe scanner 3326, to thus potentially avoid copyrlght
which is in turn completely enclosed by a black region 5503. 4 1nfr11}gement of the document. Where the. target .feature isa

. s specific code, such may be used to permit copying of such

The process 3600 of detecting target features (in this case, d s . -

. . . . ocuments by only those photocopiers including that specific

registered trademark symbols) will now be described with : .

. . code stored in the HDD 3310. As such, detection of target

reference to the second implementation above. The methods . .

. . . features can be used to selectively enable or disable a photo-

of detecting registered trademark symbols and detecting . .

. . . . copying function.

copyright symbols differ only in the shape metrics used, the 45

normalization of metrics determined in step 4604 and the INDUSTRIAL APPLICABILITY

weighting of metrics in step 4605.

For the normalization step 4604, the following ideal, mini- The arrangements described are applicable to the computer
mum and maximum values are appropriate. Shape metrics not and data processing industries and particularly for the detec-
listed in the table below are not used for registered trademark ° tion and decoding of QR codes in documents. The arrange-
symbol detection. ments are also useful for the authentication of documents and

particularly to prevent the inappropriate replication of copy-
right works or those carrying registered trade marks

Metric Minimum Ideal Meaximum The foregoing describes only some embodiments of the

mass._ratio 0 0.6261 12592 » present inventiqn, and modiﬁcations and/or changes can be

width_ratio 0 0.6 1.0 made thereto without departing from the scope and spirit of
height_ratio 0 0.6 1.0 the invention, the embodiments being illustrative and not
rectilinearity g, e, 0 0 0.5 restrictive

concentricity 0 0 concentricity__max ’

:igg{gﬁgc}'ﬂd 8 B }'8 5'8 60 What is claimed is:

Solidity,, r‘e’:t’”" 0 0.3005 Lo 1. A computer implemented method of decoding a QR code
having only two initially detected finder patterns, the detec-
tion corresponding to determining the existence of the finder

At step 4605, shape metrics are multiplied by weights and patterns in the QR code, the computer including at least a
summed to generate a single similarity score. To detect reg- 65 processor for executing the method and an associated

istered trademark symbols, shape metrics normalized at step
4604 are multiplied by the following weights:

memory in which an image including the finder patterns is
stored, said method comprising the steps of:

US 9,355,293 B2

53

(a) acquiring a pattern matching template based on char-
acteristics of the detected finder patterns;

(b) determining at least one candidate region about the
detected finder patterns, the candidate region being
based at least on the relative positions of the detected
finder patterns in the QR code;

(c) locating a previously undetected third finder pattern of
the QR code in the at least one candidate region by
correlating content of the candidate region with the pat-
tern matching template; and

(d) decoding the QR code with each of the two initially
detected finder patterns and the third finder pattern.

2. A method according to claim 1 wherein the two initially
detected finder patterns are detected using connected compo-
nent analysis.

3. A method according to claim 1 wherein the characteris-
tics of the detected finder patterns comprise angle of rotation
and module size.

4. A method according to claim 3 wherein the characteris-
tics of the detected finder patterns further include black and
white module sizes.

5. A method according to claim 1 wherein the characteris-
tics of the detected finder patterns are based on the intensity
values of pixels of at least one of the detected finder patterns.

6. A method according to claim 1 wherein step (d) com-
prises decoding the QR code with the location of the third
finder pattern and the locations of the two initially detected
finder patterns.

7. A computer readable storage medium having a computer
program recorded thereon, the program being executable by
computer apparatus to decode a QR code having only two
initially detected finder patterns, the detection corresponding
to determining the existence of the finder patterns in the QR
code, said program comprising:

code for acquiring a pattern matching template based on
characteristics of the detected finder patterns;

code for determining at least one candidate region about
the detected finder patterns, the candidate region being
based at least on the relative positions of the detected
finder patterns in the QR code;

code for locating a previously undetected third finder pat-
tern of the QR code in the at least one candidate region

10

15

30

40

54

by correlating content of the candidate region with the
pattern matching template; and

code for decoding the QR code with each of the two ini-

tially detected finder patterns and the third finder pattern.

8. A computer readable storage medium according to claim
7 wherein the two initially detected finder patterns are
detected using connected component analysis.

9. A computer readable storage medium according to claim
7 wherein the characteristics of the detected finder patterns
comprise angle of rotation and module size.

10. A computer readable storage medium according to
claim 9 wherein the characteristics of the detected finder
patterns further include black and white module sizes.

11. A computer readable storage medium according to
claim 8 wherein the characteristics of the detected finder
patterns are based on the intensity values of pixels of at least
one of the detected finder patterns.

12. A computer readable storage medium according to
claim 7 wherein said code for decoding comprises code for
decoding the QR code with the location of the third finder
pattern and the locations of the two initially detected finder
patterns.

13. Computer apparatus adapted for decoding a QR code
having only two initially detected finder patterns, the detec-
tion corresponding to determining the existence of the finder
patterns in the QR code, said apparatus comprising:

means for acquiring a pattern matching template based on

characteristics of the detected finder patterns;

means for determining at least one candidate region about

the detected finder patterns, the candidate region being
based at least on the relative positions of the detected
finder patterns in the QR code;

means for locating a previously undetected third finder

pattern of the QR code in the at least one candidate
region by correlating content of the candidate region
with the pattern matching template; and

means for decoding the QR code with each of the two

initially detected finder patterns and the third finder pat-
tern.

